Contact
Agni Bethani
Position
Academic staff
Address
Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve
Belgium
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve
Belgium
Office
UCL member card
People responsibilities
PhD students
Master students
Former members
Francisco Casalinho
(UCL-FSR)
(member since November 2023)
This project is to study Higgs pair production in the bbtautau final state at CMS. The objectives of this study are: to measure the Higgs self-coupling constant, explore anomalous values of the Higgs couplings and new Higgs couplings using effective field theory parameterisation and study the Higgs pair production associated with a vector boson.
This project is to study Higgs pair production in the bbtautau final state at CMS. The objectives of this study are: to measure the Higgs self-coupling constant, explore anomalous values of the Higgs couplings and new Higgs couplings using effective field theory parameterisation and study the Higgs pair production associated with a vector boson.
Master students
Former members
Projects
Research directions:
Experiments and collaborations:
Active projects
Non-active projects
Data analysis in HEP, astroparticle and GW experiments
Detector commissioning, operation and data processing
Particle Physics
Phenomenology of elementary particles
Research and development of new detectors
Detector commissioning, operation and data processing
Particle Physics
Phenomenology of elementary particles
Research and development of new detectors
Experiments and collaborations:
Active projects
Search for Higgs boson(s) in CMS at the LHC in the llbb topology
Agni Bethani, Christophe Delaere, Noemie Deplechin
Search for Higgs boson(s) within the Standard Model and beyond and also withing a minimal extension of the scalar sector (2HDM).
The final state under study is a Z decaying into a lepton pair associated with two b-jets. This topology is sensitive to a light SM Higgs via the associate ZH production, as well as a middle mass range SM Higgs boson via the inclusive Higgs production followed by its decay into ZZ with one Z decaying into a lepton pair and the other into bbar.
It is also very sensitive to the production of a non standard heavy Higgs boson decaying into Z plus A (pseudo scalar Higgs boson).
Similar selection (but outside of the Z window) is also sensitive to H->aa->llbb, with "a" a generic light scalar.
External collaborators: CMS collaboration.
Search for Higgs boson(s) within the Standard Model and beyond and also withing a minimal extension of the scalar sector (2HDM).
The final state under study is a Z decaying into a lepton pair associated with two b-jets. This topology is sensitive to a light SM Higgs via the associate ZH production, as well as a middle mass range SM Higgs boson via the inclusive Higgs production followed by its decay into ZZ with one Z decaying into a lepton pair and the other into bbar.
It is also very sensitive to the production of a non standard heavy Higgs boson decaying into Z plus A (pseudo scalar Higgs boson).
Similar selection (but outside of the Z window) is also sensitive to H->aa->llbb, with "a" a generic light scalar.
External collaborators: CMS collaboration.
Search for nonresonant Higgs boson pair production in the llbb+MET final state
Agni Bethani, Christophe Delaere, Vincent Lemaitre, Fabio Maltoni
The discovery of a Higgs boson (H) by the ATLAS and CMS experiments fixes the value of the self-coupling λ in the scalar potential whose form is determined by the symmetries of the Standard Model and the requirement of renormalisability. Higgs boson pair production is sensitive to the self-coupling and will play a major role in investigating the scalar potential structure.
This project consists in a search for nonresonant Higgs boson pair production via gluon fusion in the final state with two leptons, two b jets and missing transvere energy – gg → H(bb) H(WW) asking for the leptonic decay of the W's. The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
The discovery of a Higgs boson (H) by the ATLAS and CMS experiments fixes the value of the self-coupling λ in the scalar potential whose form is determined by the symmetries of the Standard Model and the requirement of renormalisability. Higgs boson pair production is sensitive to the self-coupling and will play a major role in investigating the scalar potential structure.
This project consists in a search for nonresonant Higgs boson pair production via gluon fusion in the final state with two leptons, two b jets and missing transvere energy – gg → H(bb) H(WW) asking for the leptonic decay of the W's. The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
Search for resonant Higgs pair production in the llbb+MET final state
Agni Bethani, Christophe Delaere, Vincent Lemaitre
The recent discovery of a scalar boson compatible with the Standard Model (SM) Higgs boson opened new windows to look for physics beyond the SM (BSM). An example of newly accessible phenomenology is the production of resonances decaying into two SM Higgs bosons (h) predicted by several theory families such as additional Higgs singlet/doublet or warped extra dimension.
This project consists in a search for spin-0 or spin-2 resonances produced via gluon fusion in the final state with two leptons, two b-jets and missing transverse energy – gg → X → h(bb) h(WW) asking for the leptonic decay of the W's. In particular, we are probing a mass range between 260 GeV and 900 GeV.
The recent discovery of a scalar boson compatible with the Standard Model (SM) Higgs boson opened new windows to look for physics beyond the SM (BSM). An example of newly accessible phenomenology is the production of resonances decaying into two SM Higgs bosons (h) predicted by several theory families such as additional Higgs singlet/doublet or warped extra dimension.
This project consists in a search for spin-0 or spin-2 resonances produced via gluon fusion in the final state with two leptons, two b-jets and missing transverse energy – gg → X → h(bb) h(WW) asking for the leptonic decay of the W's. In particular, we are probing a mass range between 260 GeV and 900 GeV.
Study and optimization of b-tagging performances in CMS
Agni Bethani, Christophe Delaere
We are involved in the activities of the btag POG (performance object group) of CMS, in release and data validation and purity measurement. We are also interested in btagging in special cases like for colinear b-jets. Furthermore, we are involved in the re-optimization and improvement of the Combined Secondary Vertex (CSV) tagger for the 2012 analyses.
External collaborators: Strasbourg CMS group, CMS collaboration.
We are involved in the activities of the btag POG (performance object group) of CMS, in release and data validation and purity measurement. We are also interested in btagging in special cases like for colinear b-jets. Furthermore, we are involved in the re-optimization and improvement of the Combined Secondary Vertex (CSV) tagger for the 2012 analyses.
External collaborators: Strasbourg CMS group, CMS collaboration.
The CMS silicon strip tracker upgrade
Anna Benecke, Agni Bethani, Laurent Bruniaux, Jérôme de Favereau, Christophe Delaere, Noemie Deplechin, Majid Hussain, Paul Malek, Nicolas Szilasi, Semra Turkcapar
Development of the "phase II" upgrade for the CMS silicon strip stracker.
More precisely, we are involved in the development of the uTCA-based DAQ system and in the test/validation of the first prototype modules. We take active part to the various test-beam campaigns (CERN, DESY, ...)
This activity will potentially make use of the cyclotron of UCL, the probe stations and the SYCOC setup (SYstem de mesure de COllection de Charge) to test the response to laser light, radioactive sources and beams.
The final goal is to take a leading role in the construction of part of the CMS Phase-II tracker.
External collaborators: CRC and CMS collaboration.
Development of the "phase II" upgrade for the CMS silicon strip stracker.
More precisely, we are involved in the development of the uTCA-based DAQ system and in the test/validation of the first prototype modules. We take active part to the various test-beam campaigns (CERN, DESY, ...)
This activity will potentially make use of the cyclotron of UCL, the probe stations and the SYCOC setup (SYstem de mesure de COllection de Charge) to test the response to laser light, radioactive sources and beams.
The final goal is to take a leading role in the construction of part of the CMS Phase-II tracker.
External collaborators: CRC and CMS collaboration.
Non-active projects
Publications in IRMP
All my publications on Inspire
Number of publications as IRMP member: 2
Number of publications as IRMP member: 2
2025
IRMP-CP3-25-32: Operation and performance of the CMS silicon strip tracker with proton-proton collisions at the CERN LHC
Hayrapetyan, Aram and others
[Abstract] [PDF] [Local file] [Journal] [Dial]
Published in INST 20 (2025) P08027
Refereed paper. September 22.
[Abstract] [PDF] [Local file] [Journal] [Dial]
Published in INST 20 (2025) P08027
Refereed paper. September 22.