Contact
Name
Pietro Vischia

Position
Postdoc
Funding: UCL-FSR
Member since July 2018

Email
pietro.vischia@uclouvain.be

Address
Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve
Belgium

Phone
+32 10 473205

Office
E.146

Personal homepage
https://cern.ch/vischia

UCL member card
http://www.uclouvain.be/pietro.vischia
Teaching
- LPHY2233 (2019), statistics and clustering algorithms
- LPHYS1201 (2019) v2
- LPHYS1201 (2018) v2
Research statement
My main research interest is in statistics and machine learning; I am currently working on developing algorithms which employ resampling techniques to the problem of anomaly detection, and on the problem of expressing the expected statistical significance in an approximate way in searches for new signals.

I am a member of the CMS Collaboration, where I work as a statistics advisor (CMS Statistics Committee) and to experimental measurements in top-Higgs physics (ttH observation and top-Higgs coupling constraints in an EFT framework) and in Standard Model precision measurements (WZ, also constraining the triboson coupling in an EFT framework).
Projects
Research directions:
Data analysis in HEP experiments

Experiments and collaborations:
CMS

Active projects
Advanced Multi-Variate Analysis for New Physics Searches at the LHC
Agni Bethani, Florian Bury, Christophe Delaere, Andrea Giammanco, Vincent Lemaitre, Fabio Maltoni, Alessia Saggio, Pietro Vischia

With the 2012 discovery of the Higgs boson at the Large Hadron Collider, LHC, the Standard Model of particle physics has been completed, emerging as a most successful description of matter at the smallest distance scales. But as is always the case, the observation of this particle has also heralded the dawn of a new era in the field: particle physics is now turning to the mysteries posed by the presence of dark matter in the universe, as well as the very existence of the Higgs. The upcoming run of the LHC at 13 TeV will probe possible answers to both issues, providing detailed measurements of the properties of the Higgs and extending significantly the sensitivity to new phenomena.

Since the LHC is the only accelerator currently exploring the energy frontier, it is imperative that the analyses of the collected data use the most powerful possible techniques. In recent years several analyses have utilized multi-variate analysis techniques, obtaining higher sensitivity; yet there is ample room for further improvement. With our program we will import and specialize the most powerful advanced statistical learning techniques to data analyses at the LHC, with the objective of maximizing the chance of new physics discoveries.

We are part of a network of European institutions whose goal is to foster the development and exploitation of Advanced Multi-Variate Analysis (AMVA) for New Physics searches. The network offers extensive training in both physics and advanced analysis techniques to graduate students, focusing on providing them with the know-how and the experience to boost their career prospects in and outside academia. The network develops ties with non-academic partners for the creation of interdisciplinary software tools, allowing a successful knowledge transfer in both directions. The network studies innovative techniques and identifies their suitability to problems encountered in searches for new physics at the LHC and detailed studies of the Higgs boson sector.

External collaborators: University of Oxford, INFN, University of Padova, Université Blaise Pascal, LIP, IASA, CERN, UCI, EPFL, B12 Consulting, SDG Consulting, Yandex, MathWorks.
Publications in CP3
All my publications on Inspire

Number of publications as CP3 member: 1 Download BibTeX

2019

CP3-19-23: Reporting Results in High Energy Physics Papers: a Manifesto
Vischia, Pietro

[Abstract] [PDF]
To be submitted.
April 29.