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3Departament de F́ısica Quàntica i Astrof́ısica and Institut de Ciencies del Cosmos (ICCUB) ,

Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
4Gravitation Astroparticle Physics Amsterdam (GRAPPA),

Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,
University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

(Dated: November 7, 2023)

Ray tracing plays a vital role in black hole imaging, modeling the emission mechanisms of pul-
sars, and deriving signatures from physics beyond the Standard Model. In this work we focus on
one specific application of ray tracing, namely, predicting radio signals generated from the reso-
nant conversion of axion dark matter in the strongly magnetized plasma surrounding neutron stars.
The production and propagation of low-energy photons in these environments are sensitive to both
the anisotropic response of the background plasma and curved spacetime; here, we employ a fully
covariant framework capable of treating both effects. We implement this both via forward and
backward ray tracing. In forward ray tracing, photons are sampled at the point of emission and
propagated to infinity, whilst in the backward-tracing approach, photons are traced backwards from
an image plane to the point of production. We explore various approximations adopted in prior
work, quantifying the importance of gravity, plasma anisotropy, the neutron star mass and radius,
and imposing the proper kinematic matching of the resonance. Finally, using a more realistic model
for the charge distribution of magnetar magnetospheres, we revisit the sensitivity of current and
future radio and sub-mm telescopes to spectral lines emanating from the Galactic Center Magne-
tar, showing such observations may extend sensitivity to axion masses ma ∼ O(few) × 10−3 eV,
potentially even probing parameter space of the QCD axion.

PACS numbers: 95.35.+d; 14.80.Mz; 97.60.Jd
Keywords: Axions; Dark matter; Neutron stars

I. INTRODUCTION

Astronomy is the art of inferring details about astro-
physical environments through indirect measurements on
the messengers they emit, be they photons, gravitational
waves or neutrinos. A basic problem in astronomy is
therefore to model the production and propagation of
these messengers from their point of emission to the mo-
ment of detection at the observatory. Taking the case of
electromagnetic signals, this entails calculating the pho-
ton production mechanism and the subsequent evolution
of photons as they pass through astrophysical media. In
general this requires tracking, amongst other things, their
intensity, frequency, polarisation and refraction. In turn
these features affect the power, directional dependence,
time-variation and spectral morphology of the signal.

Geometric ray tracing is a method that has been de-
veloped to accurately trace the propagation and prop-
erties of evolving wavefronts moving in inhomogeneous
media or regimes of strong gravity. This technique has
been successfully applied to a wide variety of different
problems in astronomy and astrophysics, including, e.g. ,
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the reconstruction of images of black holes (see e.g. [1–
6]), the reconstruction of light curves from neutron stars
(see e.g. [7–13]), the treatment of non-linear scattering
processes of low energy photons escaping the ionosphere
of the sun (see e.g. [14–16]), and in understanding ex-
tended theories of gravity [17–19] or particle physics [20–
24]. In recent years, ray tracing has also emerged as
a fundamental tool in the search for one of the most
well-motivated candidates of new fundamental physics,
axions [21–23, 25].

Axions were originally introduced many decades ago to
address one of the major outstanding problems in high-
energy theory, the so-called Strong CP Problem [26–29];
this is effectively the question of why QCD seems to con-
serve charge-parity symmetry, or equivalently, why the
electric dipole moment of the neutron appears to be so
unnaturally small. Today, the term axion is typically
used, however, to refer to the broader class of light pseu-
doscalars, regardless of whether they solve the strong CP
problem; such particles are nevertheless well-motivated
candidates for new fundamental physics, as they generi-
cally arise in well-motivated high energy theories such as
String Theory [30–34].

One of the recent and more compelling proposals to in-
directly search for axions in astrophysical environments
involves looking for radio photons generated from axion-
photon mixing in the magnetospheres of neutron stars,
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where the large magnetic fields and ambient plasma serve
to resonantly amplify the mixing process. The presence
of axions in these environments can give rise to a num-
ber of distinctive signatures at radio energies, including
narrow spectral lines from the conversion of axion dark
matter [21, 22, 35–50], and large broadband emission
generated from axions locally sourced in the magneto-
sphere itself [25, 51, 52]. In recent years, ray tracing has
played an increasingly prominent role in understanding
of the inhomogeneity, spectrum, and temporal evolution
of these radio signals, and has proven to be a funda-
mental tool in accurately interpreting radio searches for
axions [22, 25, 44, 49, 50].

The goal of this manuscript is to develop a generalized
ray tracing framework capable of treating the production
of radio photons from axions in astrophysical plasma,
with a particular focus on the treatment of ray tracing
through a highly magnetized plasma in curved spacetime,
as is required for axion searches near neutron stars. To
date, the ray tracing algorithms used in this field have
only incorporated a subset of the relevant effects, in-
cluding either the presence of an anisotropic plasma [22]
or curved spacetime effects in an isotropic plasma [23].
Moreover, the methodology of these two algorithms dif-
fer markedly, with one approach back-propagating pho-
tons from an asymptotic observer, and the other forward
propagating photons from the point of production (see
Fig. 1 for an illustrative example of the two setups). This
work serves to unite these frameworks, highlighting a va-
riety of important subtitles in the field which have thus
far gone overlooked. While the focus of this paper will
be directed toward applications of ray tracing for axion
searches, the formalism is sufficiently general to be ap-
plicable, and of interest for, the broader astronomy and
astrophysics communities.

The structure of this paper is organized as follows. In
Sec. II we present an overview of geometric ray tracing.
In particular, we derive a general formalism in which
asymptotic observables (such as the radiated power in
a given emission direction from a source) can be recon-
structed by either (i) backward propagating rays from
an infinitesimal surface element located far away from the
emitting region, or (ii) forward propagating rays from the
emitting region to asymptotic distances. This formalism
can be straightforwardly applied to arbitrary spacetime
metrics and any background medium – the generaliza-
tion of these techniques to photons and axions in mag-
netized plasmas and to curved spacetime are the focus of
Secs. III and IV. In Sec. V, we apply the formalism de-
veloped in the preceding sections to the specific problem
of searching for radio spectral lines produced from the
resonant conversion of axion dark matter in the mag-
netospheres of neutron stars. We investigate the inter-
play of a number of important effects, including, e.g. ,
the impact of plasma anisotropy, strong gravity, multi-
ply reflected photons, and a proper kinematic matching
of the resonance. We also revisit the extent to which ra-
dio observations can be used to search for axions near

the galactic center magnetar SGR J1745-2900; here, we
apply an improved modeling of the charge distribution in
the magnetosphere, showing that expected e± densities
found in the closed magnetic field lines of magnetars shift
the expected signal to higher frequencies, potentially gen-
erating signals in the O(100) GHz - THz regime. Using
rough rough estimates of the magnetic field and charge
normalization, we show that an improved understanding
of the properties of SGR J1745-2900 allow current and
future radio and sub-mm telescopes to probe unexplored
regions of the axion parameter space. We conclude in
Sec. VII.

II. RAY TRACING

In this section, we outline the basics of ray tracing re-
quired to describe radiative transport in arbitrary me-
dia. We introduce Hamilton’s equations, which allow
one to identify the wordlines of photons, and discuss dis-
tribution functions of photons and their phase-space in-
tegrals, which allow for the computation of observables
such as energy flux or radiant intensity. We use two dis-
tinct methods to numerically calculate observational sig-
natures relevant for astronomy. The first approach uses
image-based, backward ray tracing from the observer [23]
and the second implements a forward ray tracing routine
which directly samples the phase-space of photons pro-
duced at source, and reconstructs asymptotic observables
by propagating these photons to large distances [22].
When discussing radiative transport, we are typically

interested in radiation whose wavelength is much smaller
than characteristic variational scales of the medium
through which the radiation propagates. In that case,
geometric optics applies, and one can describe photons
in terms of their local phase-space coordinates given by
position xµ momentum kµ.
The dispersion relation of these photons is then de-

scribed by setting a Hamiltonian H = H(k, x) to zero
H = 0, which gives a relation k0 = k0(k,x, t) describing
the energy of the mode. This defines a family of curves
(kµ(λ), x

µ(λ)) in phase-space, where λ is the wordline-
parameter on such curves, along which H is everywhere
vanishing: i.e. dH(k(λ), x(λ))/dλ = 0. By applying the
chain-rule, one can see that

dH
dλ

=
dkµ
dλ

∂H
∂kµ

+
dxµ

dλ

∂H
∂xµ

= 0, (1)

which is satisfied provided xµ and kµ obey

dxµ

dλ
=
∂H
∂kµ

,
dkµ
dλ

= − ∂H
∂xµ

. (2)

Eqs. (2) are the well-known Hamilton’s equations, which
allow one to determine the trajectory of photons from
the source to the observer.
In order to connect the properties of the source

(e.g. emissivity) with the asymptotic observables
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FIG. 1. Demonstration of Forward and Backward Ray Tracing. Backward ray tracing (left) and forward ray tracing
(right) procedures. We show the Langmuir-Ordinary (LO) modes for a Goldreich-Julian plasma density in a strong magnetic
field plasma with dispersion relation of Eq. (23). Rays emanate from a plasma isosurface ωp = 10−5eV. In the case of backward
ray tracing, we show an image plane at θ = 1.2 whilst in forward-tracing gray trajectories show all rays sampled from the
isosurface, whilst red rays denote those binned into a viewing angle of θ = 0.7. Other values were B = 1014G, ma = 10−5eV,
α = 0, P = 2π, MNS = 1M⊙.

(e.g. observed flux), we can introduce Boltzmann’s equa-
tion [53, 54]

∂kH · ∂xfγ − ∂xH · ∂kfγ = S[k, x] , (3)

where f = f(k, x) is the phase-space distribution of pho-
tons and S[k, x] is a source term whose precise structure
depends on the emission process. Here, one can see that
Hamilton’s equations (Eq. (2)) give the characteristics
(or orbits) of the Liouville-Vlasov operator appearing on
the left-hand side of Eq. (3). Thus, along worldlines, we
have

dfγ
dλ

= S[λ] ; (4)

in the absence of collisions (S = 0), this implies that fγ
is conserved along rays, i.e.

dfγ
dλ

= 0 , (5)

which is equivalent to Liouville’s theorem [53]. Equation
(5) is the key equation in numerical ray tracing routines;
it allows the asymptotic distribution of photons to be re-
constructed by saturating the space with rays, computing
the value of fγ at source, and propagating this conserved
quantity along rays. In other words, ray tracing effec-
tively amounts to solving the 8-dimensional equation (3),
which describes the spacetime dependence of the photon
distribution function fγ .
By integrating Eq. (3), one can also derive a continuity

equation for energy [54]. Assuming a (quasi) stationary

background (such that ∂tH = 0), Eq. (3) can be pre-
multiplied by k0, placed on-shell, and integrated over 3-
momentum d3k and a spatial volume d3x = dV. This
procedure yields

d

dt

∫
dV
∫
d3kωfγ +

∫
d3k

∫
dA · vgωfγ =

∫
dVQ ,

(6)
where dA is the surface element of V (which we assume
lies outside the source), ω is the (on-shell) photon fre-
quency, vg is the photon group-velocity, and Q is defined
by

Q ≡
∫
d3kω C[k, t,x] . (7)

where C = S/(∂k0H) is a renormalised collision kernel
whose denominator arises from dividing both sides of
Eq. (3) by ∂k0H before integrating over phase space to
obtain Eq. (6). For a stationary solution, the first term
on the left-hand side of Eq. (6) vanishes, and the total
power emanating from the source is

P =

∫
d3k

∫
dA · vgωfγ . (8)

Eqs. (7) and (8) are essential for ray tracing, as they
allow for the construction of observables from the indi-
vidual rays. As we will show in the following subsections,
Eq. (7) lies at the heart of the forward ray tracing pro-
cedure, while Eq. (8) is key to understanding backward
tracing; Eq. (6) serves to unite these frameworks, since
for stationary solutions these two quantities are equal.
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A. Backward ray tracing and Imaging

Backward ray tracing is the traditional approach used
to infer the emission properties in different directions
from a source. This approach proceeds by constructing
an infinitesimal surface far from the object (oriented with
a surface normal parallel to the line of sight), and tracing
parallel rays from the surface ‘backwards’ in time until
they encounter the source itself. The differential power
flowing the infinitesimal surface is given by

dP = d3k dAvg cos θg ωfγ , (9)

where θg is the angle between the photon group velocity
and the surface. Note that if the infinitesimal surface is
sufficiently far from the source then one can safely assume
the photon to be in vacuum, implying vg = 1, cos θg = 1,
and d3k = dΩω2 dω. Following [21, 23], the power per
solid angle per unit frequency is then given by a summa-
tion over each of the rays i, appropriately weighted by
their contribution to the surface area dAi, their energy
ωi, and their phase space factor f iγ , i.e.

dPi

dΩdω
=
∑
i

dAi ω
3
i f

i
γ . (10)

The only unknown quantity in Eq. (9) is f iγ , which is
determined by defining fγ at the source, and using the
fact that fγ is conserved along rays.
In order to implement this procedure numerically, we

define the asymptotic surface to be a plane consisting
of square pixels with side length ∆b. Rays are sourced
through the center of each pixel, labelled by (i, j), in a di-
rection perpendicular to the surface itself. For simplicity,
we assume photons are monochromatic, which allows one
to evade sampling over energy. This procedure generates
a differential power given by

dP(θ, φ)

dΩdω
=
∑
i,j

∆b2ω3f i,jγ . (11)

Note, however, that non-uniform sampling of the asymp-
totic surface can, in general, dramatically expedite the
numerical calculation.

B. Forward ray tracing

An alternative approach to backward ray tracing is
to directly simulate photon production from the collision
integral Eq. (7), and trace the rays forward to all parts of
the sky surrounding the source. For a (quasi) stationary
background, the power flowing at infinity is simply equal
to the power produced at the source, i.e.

P =

∫
d3x

∫
d3k ω C[k, t,x] . (12)

Rather than sampling rays from an asymptotic surface
(as in backward ray tracing), forward ray tracing works

by stochastically sampling the photon phase space at the
source, i.e. it uses Monte Carlo integration to directly
compute the right hand side of Eq. (12). Photons are
then propagated away from the source and binned on a
sphere at infinity; the angular power distribution in a
direction (θ, ϕ) is then reconstructed by summing over
the weighted rays which end up in a small bin centered
about (θ, ϕ).
At this point, one may be concerned by the fact that

Eq. (12) relates the integrated power locally to the in-
tegrated power at infinity, while the forward ray trac-
ing procedure described above relies on the fact that
this connection between local and asymptotic power also
holds at the differential level. Notice that from Liou-
ville’s theorem, it follows that the number of particles in
a phase-space element is conserved along rays, so that
dN = d3kd3xf is constant along rays. More explic-
itly, we can write this as dN = d3k cos θgvgdtdA, so that
the power flowing through an infinitesimal surface at the
point of emission, is equal to the power flowing out of
another surface at infinity (so long as these points are
connected by a ray). It is ultimately for this reason that
the forward propagation approach is valid, since all rays
in a given part of the sky conserve the phase-space ele-
ment. An equivalent way of viewing this is via the con-
servation of etendue. This means that not only is the
total integrated power conserved (and invariant under a
re-partitioning of the Monte-Carlo integration), but any
two sub-surfaces connected by rays, also have conserved
power flowing between them, and are therefore also in-
variant under a re-partitioning of the Monte Carlo inte-
gration.
In order to provide an illustrative example of the for-

ward ray tracing procedure, consider the case of uniform
isotropic emission from a finite volume VC . By draw-
ing Ns uniform samples over d3x and d3k, one can write
the differential power flowing through a patch of the sky
(θ0 ± ϵθ, ϕ0 ± ϵϕ) as

Pθ,ϕ ≃ 1

Ns

∑
i

ωiC(x⃗i, k⃗i)D(θf,i, θ0, ϵθ)D(ϕf,i, ϕ0, ϵϕ) ,(13)

where θf,i and ϕf,i are the final angular coordinates of
the photon after propagation, and we have defined the
function

D(x, y, ϵ) =

{
1 if y − ϵ ≤ x ≤ y + ϵ

0 else
. (14)

As in the case of backward propagation, the choice of uni-
form sampling may not be optimal, and one may instead
prefer to implement importance sampling.
As illustrated by this example, the forward-tracing

method is fully general and can be used to solve the ra-
diative transport problem in any setup. Ultimately, how-
ever, our purpose is to study the production of photons
from axions; this problem is more subtle in that axion-
photon mixing is a one-to-one process, meaning that it
only occurs on particular surfaces in phase-space (namely
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FIG. 2. Photon Emission Points . Subset of photon emission points from rays which propagate to an observing direction
(θ, ϕ) = (35◦, 0◦), projected onto the point of photon production, for the case of backward ray tracing (left) and forward ray
tracing (right). Gray contours illustrate the 2D surface around the neutron star defined by ma = ωp. Results are shown for
the case of an anisotropic dispersion relation in curved spacetime, with MNS = 1 and ma = 10−5 eV.

at locations where the dispersion relations of axions and
photons become degenerate). This condition collapses
Eq. (12) to a momentum-weighted sum over kinematic
surfaces rather than volumes. In the following sections
we provide a more detailed discussion on how to gener-
alize the Monte Carlo integration procedure to the case
of axions.

C. Comparing Forward and Backward Ray Tracing

Having summarized the general approach to forward
and backward ray tracing, we outline here the potential
advantages and disadvantages of each.

• Forward propagation inevitably generates samples
across the entire sky (i.e. the sphere at infinity sur-
rounding the source). In the event that the ob-
serving angle is known, i.e. one is only interested
in the power radiated in a particular direction on
the sky, the forward propagation approach clearly
suffers from oversampling, since only a fraction of
the samples are actually used in the computation of
the relevant observable. In the event that this sam-
pling is uniform, the over sampling may be severe,
however there exist many forms of adaptive sam-
pling algorithms which can be used to improve the
sampling efficiency. This is not a problem for back-
ward propagation, since by construction all sam-
ples originate from the angle of interest. The issue
of oversampling can be seen in the comparison pro-
vided in Fig. 2; in this example, low-energy pho-
tons are assumed to be sourced from axions near a
neutron star (see Sec. III), and their point of ori-
gin for a particular viewing angle (taken here to be

(θ, ϕ) = (35◦, 0◦)) is reconstructed using both back-
ward and forward ray tracing techniques. While
the rays originate from the same location near the
neutron star, the density of samples in the forward
ray tracing approach is significantly reduced with
respect to the backward ray tracing example.

• Conversely, generating full sky distributions of the
flux is more complicated in the context of backward
propagation, as one must scan over (and interpo-
late between) many viewing angles (whereas this
is a natural output of the forward sampling pro-
cedure). Full sky distributions can prove useful for
understanding the fundamental physics and observ-
ables in the problem at hand, extracting the time
profile of the signal, and in some cases, full sky dis-
tributions are required in order to marginalize over
uncertainties associated with an unknown viewing
angle. This could be circumvented by sampling the
observing directions and positions on the observing
plane (see Ref. [23]) stochastically (i.e. , via Monte
Carlo integration) rather than deterministically.

• Backward propagation also allows one to recon-
struct physical images - see Fig 3. In this work, we
are concerned principally with neutron stars, which
are too small to resolve and so the precise structure
of the image plays no role from a data analysis per-
spective in that context, since at low resolution,
one is sensitive only to the integrated power over
the image plane. While image reconstruction could
become important in other contexts, it is unclear
whether any additional information is added that
cannot be directly obtained from the photon source
locations (which is information that is available in
both approaches).
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• As will be shown shortly, divergences arise in
the conversion probability for axion-photon mix-
ing. These divergences are naturally regulated by
the phase-space measure (see discussion around
Eq. (20)). The removal of these divergences in the
forward tracing is therefore somewhat tautologous,
as the cancellation occurs as soon as the integral
Eq. (20) is written down. This integral (which is
then Monte Carlo sampled in the forward-tracing
numerical routine) is therefore trivially convergent.
However, in backward ray tracing, the conversion
probability leads to quantities which diverge at an
individual ray-level; in principle, these divergences
should be regulated by the phase-space measure in
the image plane. Backward ray tracing therefore
provides a powerful consistency check for the treat-
ment of phase space, kinetic theory and the conver-
sion probability in this work and [54], and indeed
the equivalence and finiteness of forward and back-
ward results is ensured by the expression Eq. (6).
The existence of two independent numerical rou-
tines has therefore proved extremely fruitful in de-
veloping both numerical and analytic understand-
ing of the problem at hand.

• Gravity plays a stabilizing role in backward ray
tracing, since rays must be back-propagating from
regions of high refractive index, to regions where
rays are almost evanescent (ωp ≃ ω). This has a
tendency to deflect rays away from the production
surface. In the absence of gravity, ultra-high nu-
merical precision is therefore needed for rays to con-
verge to the point of resonance where ωp ∼ ma ≃ ω.
In the case of forward propagation this problem is
evaded, allowing one to independently study the
impact of gravity on ray propagation.

D. Revisions, Theory and Code Testing

In this section, we briefly outline some of the changes
which have been made both to our presentation and un-
derstanding of the theory concerning ray tracing methods
since previous work [22, 23]. We also describe revisions
and improvements to the underlying codes. The back-
ward ray tracing code is implemented in Mathematica,
whilst the forward ray tracing code uses Julia, with both
requiring parallelization on computing clusters.

We have carried out extensive tests of the methods
used in this paper. We have verified at a ray-by-ray level
that the two codes produce the same photon worldlines
according to Eqs. (2) by backward propagating rays with
initial conditions inferred from forward propagation from
the source. We carried out this comparison for two equiv-
alent forms of the dispersion relation presented in [56]
and [57]. Note that two important realizations emerged
in attempting to generate agreement at the ray-by-ray
level. First, fundamental constants (such as the speed of

FIG. 3. Imaging in Backward Ray Tracing. Image plane
from backward ray tracing. Displayed is the intensity (energy
per unit area, per unit time) flowing through the image plane
in the direction θ = 35◦ for ma = 10µeV in the Goldreich-
Julian plasma model [55]. See Secs. III-V for more details.

flight) need to be defined equivalently to a high level of
precision, and second, the image plane in the backward
ray tracing approach needs to be placed at sufficiently
large distances such that the vacuum approximation is
valid (which is an order of magnitude larger than that
used in the original work of [23]). In addition, high-
precision ODE solvers must be applied in both cases.

We checked that rays which escape to a particular di-
rection (θ, φ) in the sky emanate from the same sourc-
ing regions as those given by back-propagating from that
same part of the sky (see Fig. 2). We confirmed that the
total power computed from forward propagation (which
is trivially consistent with Eq. (12)) is equivalent to the
power inferred by backward tracing to within a few per-
cent. This was also done across a full range of observing
angles, and for different photon frequencies.

We have also verified mathematically, using analytic
expressions found in [23, 58], that, for an isotropic plasma
and a spherical emission surface, the analytic expres-
sions Eq. (11) for the power from backward tracing, and
Eq. (12) for forward tracing, are equal. Note we even ver-
ified this in curved spacetime for a Schwarzschild metric.

We also now implement correct kinematic matching of
axions and photons at ka = kγ , and incorporate a variety
of curved-spacetime effects in each code. In addition, we
make use of the new conversion probability derived in
Ref. [54]. In particular, the methods implemented here
provide a much deeper understanding of phase space, and
verify numerically that the divergence in the probability
is regulated by phase space measure.

In the backward ray tracing code, we have also im-
plemented an improved event-location routine to iden-
tify where photons are produced. Additionally, we now



7

choose to describe ray tracing in terms of the photon dis-
tribution function fγ , rather than the radiant intensity Iγ
of the photon (as was done in previous work [23]). These
are equivalent and related by fγ = Iγ/(ω

3nr), where nr
is the ray-refractive index described in [59]. In particular,
our discussion of phase-space in this work and Ref. [54]
now allows us to properly understand the connection be-
tween the forward and backward ray tracing methods of
[23] and [22]. As discussed in the sections below, the orig-
inal work of [23] did not include the possibility of photon
reflection – ray tracing was terminated when the first
stopping condition, ma = ωp, was encountered. This can
prove problematic for photons sourced near the neutron
star surface, since a sizable fraction of these photons un-
dergo rapid oscillations between large plasma gradients.
This has now been corrected by tracing photons for a
much longer period of time, ensuring they have entered,
and then escaped, the magnetosphere. Finally, in the
backward ray tracing code we now implement a coupled
set of first order ODEs in Eq. (2) rather than a single
second order ODE given by Eq. (20) of Ref. [23], which
is only possible in an isotropic medium.

The forward ray tracing code of [22] also included one
notable update of the surface sampling procedure, which
now allows one to appropriately treat the resonance con-
dition (defined by the location where kγµ = kaµ, rather
than ωp = ma, with the plasma frequency defined as
ω2
p ≡ 4πne/me). Note that the modified resonance con-

dition implies that photons are not sourced by a sin-
gle surface, but rather a foliation of surfaces, each be-
ing locally defined by the relative orientation of the ax-
ion momentum and the magnetic field; as such, the new
Monte Carlo sampling procedure picks out a single sur-
face within the foliation by first defining the orientation

of k̂a, and then proceeding to uniformly sample the as-
sociated two-dimensional surface (as outlined in [22]).

III. AXION-PHOTON CONVERSION AND
MAGNETIZED PLASMAS

We turn now to the application of ray tracing to the
production of photons from axions in magnetized plas-
mas. In Ref. [54], it was shown that the axion collision
integral is equivalent to

C[kγ ,x] =
1

∂k0
H

∫
d3ka

(2π)32Ea
(2π)4δ (Eγ(kγ ,x)− Ea(ka))

× δ(3) (kγ − ka) |Ma→γ |2 fa(ka,x). (15)

where |Ma→γ |2 is an effective squared-matrix element
for axion-photon conversion, fa is the phase-space dis-
tribution of axions, and the axion energy Ea is defined
by E2

a = k2 + m2
a. Note the 3-momentum integral can

be performed trivially so that upon substituting Eq. (15)

into Eq. (12) we find the power is defined as

P =

∫
d3k

∫
d3x δ(Eγ(k,x)− Ea(k))

π |Ma→γ |2
∂k0

H fa.

(16)

Using the integral identity for any smooth function G∫
Rn

dnz δ(G(z)) =

∫
G−1(0)

dΣ
1

|∇G| , (17)

where dΣ is the area element on the surface defined by
G(z) = 0, the integration of the delta function in Eq. (16)
can then be performed with respect to the spatial inte-
gral, giving

P =

∫
d3k

∫
dΣk

π |Ma→γ |2
∂k0H |∇xEγ |

fa , (18)

where Σk is a surface defined by the set of points

Σk = {x : Ea(k,x)− Ea(k) = 0} , (19)

so that over a continuum of k values, the Σk define a
foliation of distinct surfaces.
As a special case, note that for an isotropic (unmag-

netized) cold plasma, we have and Eγ = k2 + ω2
p so that

the surface on which the energies become degenerate is
given simply by ωp = ma, in which case the foliation col-
lapses to a single surface Σ, independent of k. In general,
however, the dispersion relation (and hence Eγ) can also
depend on the direction of k, generating a distinct sur-
face for each value of the momentum; as described below,
this is the case in a strongly magnetized plasma, as found
near the surfaces of neutron stars.
Returning to the expression Eq. (18) for the axion col-

lision integral, we can then insert a factor of va and
cos θn in the denominator and the numerator, where
cos θn is the cosine of the angle between the phase ve-
locity vp = k/Eγ and the normal to the surface sur-
face Σk. Here vp is the phase velocity of the axion,
equal to that of the photon at the resonant surface. We
then also use the relation Σk cos θnvp = dΣp · vp and
vg cos θn |∇xEγ | = |vp · ∇xEγ |. This allows us to write

P =

∫
d3k

∫
dΣk · vaPaγ ωfa. (20)

where

Paγ =
π |Ma→γ |2

Eγ∂k0H |va · ∇xEγ |
(21)

is a conversion probability, which, as shown in Ref. [54],
defines the ratio of axion to photon phase-space densities
at the resonance:

Paγγ(k,x) ≡
fγ(k,x)

fa(k,x)
. (22)
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The general form of Paγ of course depends on the
medium in question. For strongly magnetized plasmas
(as is relevant for this work), the photon mode of in-
terest is the Langmuir-Ordinary (LO) mode (see [22]);
in non-relativistic plasmas, the energy of the LO mode
satisfies

E2
γ =

1

2

[
ω2
p + k2 +

√
k4 + ω4

p + 2k2ω2
p(1− 2 cos2 θB)

]
,

(23)
where θB is the angle between B and k. Using this ex-
pression for the photon energy, one finds a conversion
probability given by [54]

Paγ =
π

2
· g2aγγ |Bext|2E4

γ sin
2 θ

cos2 θω2
p

(
ω2
p − 2E2

γ

)
+ E4

γ

· 1

|va · ∇xEγ |
. (24)

Eq. (20) thus relates the power P flowing through a
bounding surface A to a term involving an integration
over axion phase-space at the source. The surface A can
then be chosen to be the sphere at infinity, thus relating
the power at source to the power measured by observers
far away.

As a reminder, the general idea behind the forward
propagation approach is to directly compute the right
hand side of Eq. (20) locally at the source using Monte
Carlo integration, and then use ray tracing to relate the
local properties of emission to the asymptotic properties
by exploiting the fact that fγ is conserved along trajec-
tories once outside the source (Eq. (5)). Alternatively,
the backward ray tracing approach tracks the conserved
phase-space density fγ along photon world-lines until
kγ = ka, at which point one assigns a value fγ = Paγ×fa.
Note that in the case of backward ray tracing, trajecto-
ries must be traced until they have passed through and
fully escaped the gravitational potential of the neutron
stars – this is a consequence of the fact that each photon
worldline can encounter multiple level crossings, and the
total photon phase space is the weighted sum of each of
these.

IV. GENERALIZATION TO CURVED
SPACETIME

In this section, we discuss how to generalize the results
presented in previous sections to curved spacetime. We
focus in particular on the case of photon production via
axions in strongly magnetized plasmas in the presence of
gravitational fields. This is particularly relevant in the
vicinity of neutron stars, which are the most compact
stars in existence, with the ratio of the Schwarzschild
radius to the neutron star radius being rs/R ∼ 0.3.

The importance of incorporating gravitational effects
is multi-faceted. Firstly, gravity alters photon trajecto-
ries relative to flat spacetime, acting as an attractive force
which counteracts repulsive refraction due to plasma gra-
dients [23, 53, 57, 58]. Next, axions fall towards the star

along geodesics of the stellar spacetime metric. Energy-
momentum conservation demands that axions and pho-
tons should have matching 4-momenta at the point of
creation, kaµ = kγµ. For kinematic self-consistency, one
should therefore demand that gravitational effects are
incorporated self-consistently in the axion and photon
dispersion relations. By doing so, one changes the geom-
etry of the foliation Σk in Eq. (20) relative to flat space,
with the innermost and outermost surfaces in the folia-
tion separated by a greater distance than in flat space. In
addition, metric contributions will enter the infinitesimal
area dΣk appearing in the collision integral.
A related consequence is the fact that gravity increases

the density of axion near the star [36] – this arises because
geodesic bundles of axions become focused in regions of
strong gravity (causing a greater number of axions to
cross the resonant conversion region per unit time), and
can lead to a sizable enhancement of the amplitude of
the radio flux. This effect has been included in previous
work via a renormalization of fa, but in generalization
must be done self-consistently with the aforementioned
effects.
Turning to the production process itself, the analytic

expression for the conversion probability in flat space is
intimately connected to phase-space, kinematics, disper-
sion relations, and worldlines of photons and axions [54].
Crucially, divergences emerging in the conversion proba-
bility are shown in flat space to be canceled by compen-
sating terms in the phase-space integration in Eq. (20).
As a result, a fully self-consistent generalization of ki-
netic theory and ray tracing to curved spacetime is also
relevant for properly describing the efficiency with which
photons are produced.
Finally, as pointed out in [44], strong magnetic fields

and larger values of gaγγ can lead to O(1) axion-photon
transitions. Computing the radio signals in this scenario
requires self-consistently tracking axion and photon tra-
jectories through all resonant crossings (as well as the
trajectories of axions and photons sourced from those
resonances); although we do not go beyond perturbative
production in this work, the techniques developed here
lay the groundwork for such follow-up analyses.
In the remainder of this section, we outline how to

incorporate curved spacetime effects into each step of the
problem.

A. Magnetized Plasmas in Curved Spacetime

Let us begin by defining the generalized Hamiltonian
that describes the covariant treatment of waves in a mag-
netized plasma. The covariant treatment of waves in a
magnetized plasma on curved spacetime can be found
in [56, 57, 60–62] (the less general case of an isotropic
plasma is studied in [53, 58]). For a non-relativistic
plasma, with fluid velocity uµ, phase space coordinates
(xµ, kµ) and background electromagnetic field strength
tensor Fµν and spacetime metric gµν , we find the Hamil-
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tonian is given by

H(x, k)

= (ω2 − p2)
[
ω2ω2

L(ω
2 − ω2

p − p2) + ω2
p(ωL · p)2

]
− ω2(ω2 − ω2

p)(ω
2 − ω2

p − p2)2 . (25)

where

ω = uµkµ, p = h · k , (26)

and

hµν = gµν + uµuν , u2 = −1 , (27)

with

ωL =
√
ωLµω

µ
L , ωµ

L =
e

2me
εµναβuνBαβ , (28)

where Bαβ = hαµhβνF
µν , εµναβ is the Levi-Civita ten-

sor, hµν is the projection operator onto the rest-frame of
the plasma, ωL is the Larmour frequency, and ω and pµ
are the frequency and 4-momentum in the rest-frame of
the plasma.

We can also define the magnetic field via [57]

Bµ = εµνρσFνρuσ. (29)

Using these relations, we have

ωµ
L =

e

2m
Bµ, (30)

ωL · p = ωL · k (31)

p2 = k2 + ω2, (32)

where the first two identities follow from the anti-
symmetric properties of the Levi-Civita tensor when con-
tracted with multiple uµ, which also implies u·ωL = 0. It
therefore follows that the Hamiltonian can be re-written
as

H(x, k) =k2
[
ω2ω2

L(k
2 + ω2

p)− ω2
p(ωL · k)2

]
− ω2(ω2 − ω2

p)(k
2 + ω2

p)
2 . (33)

We can now go to the strong magnetization limit relevant
for neutron star magnetospheres. This is characterized
by the limit ωL ≫ ω, ωp. In that limit, the dispersion
relation H = 0 can be equivalently realized by the Hamil-
tonian

H = gµνkµkν + (ω2 − k2∥)
ω2
p

ω2
(34)

where k∥ = k · B/
√
B.B, which is identical to the dis-

persion relation in [57] in the limit of a non-relativistic
plasma1 .

1 Note some sign differences due to a different metric signature
used between Refs. [56, 60–62] and [57].

We can also define an angle between Bµ and kµ

cos θB =
B · k
kB

. (35)

where k =
√
k · k. This allows us to write k2∥ =

k2 cos2 θB .
For stationary plasmas and spacetimes, we can choose

the fluid to be instantaneously at rest with respect to
the space-time metric. For example, for a Schwarzschild
metric

ds2 = −Adt2 +A−1dr2 + r2dΩ2 (36)

where A ≡ (1 − rs/r) and rs ≡ 2GM , we can de-
fine generalized phase-space coordinates (t, r, θ, φ) and
(kt, kr, kθ, kφ) and a fluid velocity

uµ =

(√
−g−1

tt , 0, 0 , 0

)
. (37)

In this case, ω2 = −gttk2t and hence, k2 = gttk2t +

gijkikj = −ω2 + |k|2, with |k|2 = gijkikj and where
i, j ∈ (r, θ, φ) label the spatial components of tensors.
We also have B0 = 0. Hence in this frame, we can write
the dispersion relation as

ω2
(
ω2 − |k|2 − ω2

p

)
+ |k|2ω2

p cos
2 θB = 0, (38)

which gives

ω2 =
1

2

[
|k|2 + ω2

p

±
√
|k|4 + ω4

p + 2|k|2ω2
p(1− 2 cos2 θB)

]
, (39)

with the ‘+’ and ‘-’ signs corresponding respectively to
the LO mode and Alfén mode of Eq. (23). Hence, to
construct rays in curved spacetime, we solve Hamilton’s
equation Eq. (2) with Eq. (34). In the next subsection, we
describe how to generalize forward ray tracing to curved
spacetime, focusing in particular on how to generalize the
area measure Σk appearing in Eq. (20).

B. Radiative Transport in Curved Spacetime

In this section, we discuss how to generalize the kinetic
theory for the production of photons to curved space-
time. In particular, generalizing forward ray tracing to
curved spacetime necessitates generalizing the expression
Eq. (12), or, more specifically to axions, the surface in-
tegrals in Eq. (20). In flat space the infinitesimal power
flowing per unit time dt can be written as

dE = dt d3k dΣk cos θnvaωPaγ fa, (40)

where we have explicitly written dΣk ·vp = dΣk cos θnva
with va = |k| /ω.
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To generalize this to curved spacetime, we recognize
that dtdΣk is to be interpreted as the spacetime volume
element on a 2+1 dimensional submanifold. For a metric
of the form Eq. (36), the temporal piece of the volume
element is generalized by taking

dt→
√
|gtt|dt. (41)

The generalization of dΣk to curved spacetime is given
by taking

dΣk =
√
|hk| (42)

where |hk| is the determinant of the pull-back metric hk
corresponding to embedding the surfaces in Eq. (19) in
the background spacetime of gµν . The metric h corre-
sponds to a 2D spatial surface, which we can label by
their coordinates (θ, φ) with the radial coordinate of the
surface corresponding given by

r = rk(θ, φ), (43)

where the k subscript reminds us that these surfaces
form a foliation parametrized by k. The hk = hk(θ, φ)
can be read off from the spatial line-element ds̄2 of the
Schwarzschild metric, defined by

ds̄2 ≡ A−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (44)

Using the chain-rule we can project this line element onto
the surfaces corresponding to Eq. (43), giving

dr = (∂θrk)dθ + (∂φrk)dφ . (45)

Inserting this result into Eq. (44), one can directly read
of the elements of hαβ ; the determinant is then given by√

|hk| = A1/2 r
√
r2 sin2 θ +A−1((∂θr)2 sin

2 θ + (∂ϕr)2) ,

(46)√
|gtt| =

(
1− rs

r

)1/2
, (47)

where, for compactness we have dropped the k subscript
on r. This provides the generalization of dΣk to curved
spacetime. Notice that the expression in Eq. (47) gives
precisely the gravitational redshift factor that accounts
for energy loss of photons propagating out of the gravi-
tational potential.

Putting everything together, we find the power integral
in curved spacetime can be expressed as

P =

∫
d3k

∫
dθdφ

√
|hk| cos θnvaωPaγ fa. (48)

Notice that here d3k corresponds to the volume element
of any orthonormal tetrad on the manifold used to define
momentum space locally. It can be rotated into any other
orthonormal tetrad basis using a local SO(3) rotation,
which does not change the momentum volume measure,
because the determinant of the SO(3) matrix is 1. The
angle θn should be defined covariantly via

cos θn =
nµkµ√
k · k

(49)

where nµ is the unit normal to the surface Σk.

C. Gravitational Focusing of Axions

In general, the asymptotic axion distribution is ex-
pected to follow a Maxwell-Boltzmann distribution with
a non-relativistic momentum dispersion k0 = mav0 with
v0 ∼ 220 km/s, so that

lim
|x|→∞

fa(x,k) =
na,∞

(πk20)
3/2

e−|k|2/k2
0 , (50)

where we have assumed for simplicity that the pulsar is
at rest with respect to the rest frame of the asymptotic
axion distribution.
To compute the phase-space density near the star, we

first make use of conservation of energy,

|k(s)|2
2ma

− GMma

|x(s)| =
|k∞|2
2ma

, (51)

where |k∞| is the asymptotic momentum of the axion at
infinity and s is an axion worldline parameter. Note that
knowledge of the asymptotic solutions, Liouville’s theo-
rem, and kinematic constraints like Eq. (51), are in gen-
eral not sufficient to solve for the functional form of the
distribution function globally – that is precisely why ray
tracing is employed. However, in the present context, ow-
ing to the uniform and isotropic boundary conditions, we
can construct solutions using simple conservation argu-
ments, which effectively allow us to circumvent ray trac-
ing for axions, allowing us to determine their distribution
analytically. We know, by Liouville’s theorem that

fa(x(s),k(s)) = f(x∞,k∞)

=
na,∞

(πk20)
3/2

e−|k∞|2/k2
0 (52)

and using the energy conservation equation (i.e. Eq. (51))
on the right-hand side, and Liovuille’s theorem on the left
hand-side, one has

f(x(s),k(s))

=
na,∞

(πk20)
3/2

exp

(
− 1

k20

[
|k(s)|2 − 2GMm2

a

|x(s)|

])
. (53)

Since this holds for any ray worldlines k(s) and x(s), this
must therefore give the global solution

fa(x,k)

=
na,∞

(πk20)
3/2

exp

(
− 1

k20

[
|k|2 − 2GMm2

a

|x|

])
. (54)

The reason we are able to determine the distribution of
axions given boundary conditions on a surface at infinity,
without needing to ray-trace, is a special case arising from
the high degree of symmetry in the problem. Indeed, the
solution we have constructed is nothing more than fa ∝
exp(−Ha/k

2
0) where Ha(x,k) = k2/(2m)−2GMma/ |x|,

with the normalisation fixed by boundary conditions.
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This is a trivial solution to the collisionless, stationary,
axion Boltzmann equation

{Ha, fa} ≡ ∂kHa · ∇xfa − ∂xHa · ∇xfa = 0, (55)

where the left-hand side gives the Poisson bracket.
Clearly the solution we have constructed satisfies this
equation since fa = fa(Ha) gives a trivially vanishing
poisson bracket. For more complicated distributions,
such as, e.g. , the scenario in which axions are predom-
inantly confined to gravitationally bound miniclusters,
these simple solutions do not apply, and one must also
apply ray tracing to the in-fall of axions, see, e.g. ,[49].
Returning to our main discussion, we see the dis-

tribution in Eq. (50) gives axions with characteristic
asymptotic momentumO(k0), for simplicity, we therefore
choose to evaluate the ray tracing algorithms by isolating
a single momentum k = k0, for axions, i.e. ,

lim
|x|→∞

fa(x,k) ≃
na,∞
4πk20

δ (|k| − k0) , (56)

that is, a monochromatic, zero-width distribution with
characteristic momentum k = k0. This procedure can
be shown to yield nearly an identical density enhance-
ment as the Maxwellian distribution2, but significantly
reduces the sampling required in the backward ray trac-
ing approach since only a single photon frequency must
be sampled in the image plane3. We return in the later
sections to illustrate the impact of this simplifying as-
sumption. Following similar arguments to above, we de-
termine the global distribution to be

fa(x,k) =
na,∞
4πk20

δ

([
|k|2 − 2GMm2

a

|x|

]1/2
− k0

)
, (57)

In particular, integrating this equation over momentum
space, gives

n(x) =

∫
d3k fa(x,k)

= na,∞
kc(|x|)
k0

(58)

where k2c = k20 + 2GMm2
a/|x| so that the axion number

density is enhanced by the ratio of the asymptotic and es-
cape velocities, due to focusing of the gravitational field.
Putting this together, we can express the axion distri-
bution function in terms of the local number density of
axions:

fa(x,k) = vana,c
δ (ω − ωc)

4πk2
, (59)

2 This can be computed by replacing v∞ → v∞[v[x⃗]] (where v[x⃗] is
the local velocity at a point x⃗ along a fixed trajectory) in Eq. 56,
assuming fa is conserved along rays, and integrating over d3v at
a fixed radii near the neutron star.

3 Note that in a non-stationary background the photon frequency
could evolve notably away from the central value, and a more
sophisticated frequency sampling may be required. This effect is
not expected to be important in the case axions, however [22, 23].

where ωc =
√
m2

a + k2c and nc and va are the axion num-
ber density and phase velocity, respectively, both evalu-
ated at source.
One might wonder why it is that this gravitational fo-

cusing of axions is not reversed when photons climb out
of the gravitational potential. The reason for this, is that
photons do not experience the same refractive index as
axions as they exit the potential - they are in plasma,
not vacuum, and asymptote to a refractive index nγ → 1
as they move away from the star, whilst axions approach
na → v0. This is especially clear in the isotropic plasma,
where the distribution function f = I/(ω3n2r) is con-
served along rays [23, 53] – here, we have defined nr,
the refractive index, and I is the radiant intensity. Using
conservation of f thus implies

I∞a
ω3
∞(n∞r,a)

2
=

Ica
ω3
c (n

c
r,a)

2
=

1

Paγ

Icγ
ω3
c (n

c
r,γ)

2

=
1

Paγ

I∞γ
ω3
∞(n∞r,γ)

2
, (60)

where in the second to third equations, we used fγ =
Paγfa. Putting this together, we see firstly that Ica ∝
(ncr,a)

2/(n∞r,a)
2I∞a ∼ (2GM/v0)

2I∞a ≫ I∞a so that grav-
itational focusing increases the intensity of axions. Sec-
ondly, we have

I∞γ = Paγ

n2γ,∞
n2a,∞

I∞a ≃ Paγ
I∞a
v20
, (61)

where we used, n∞r,γ = 1 and n∞r,a = v0. We see that
(in this illustrative isotropic case) the extent to which
the gravitational focusing of axions is undone as photons
exit the plasma potential, is precisely captured by the ra-
tio of the asymptotic refractive indices of the two species.
We notice that by equating each of the equations Eq. (60)
and Eq. (61), the volume element change [23] from gravi-
tational infall of axions, ∝ (ωc/ω∞)3 ≃ (1− rs/r)−3/2, is
undone when photons exit the plasma, since this term is
purely gravitational. However, the ratio of the refractive
indices in Eq. (61) quantifies the difference of the two po-
tentials through which axions enter and photons exit the
plasma. Similar logic holds for the anisotropic medium.

D. Conversion Probability in Curved Spacetime

The conversion probability for axion-photon conver-
sion in 3D magnetized plasmas has recently been com-
puted in flat space [54], yielding the result given in
Eq. (24) (an expression which is valid in a (quasi) sta-
tionary background). Formally, given we are including
curved spacetime effects in our analysis, self-consistency
implies we should also generalize the production rate in
Eq. (24) to curved spacetime.
One important reason for doing so is that divergences

in the conversion probability should be regulated by the
phase-space measure. More specifically, in flat space the
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FIG. 4. Equivalence of Forward and Backward Ray
Tracing. Period-averaged differential power as would be
seen by an observer viewing at an angle θ with respect to
the rotational axis, computed using forward (solid) and back-
ward (dashed, points) ray tracing. Results are shown for the
isotropic (‘iso’) and anisotropic (’aniso’) dispersion relations
and an axion mass of ma = 10−5 eV.

surface normal of Σk is parallel to ∇xEγ , so that diver-
gences occurring when the phase-velocity va is perpen-
dicular to ∇xEγ are regulated by the flux-like projection
vp ·Σk, where Σk is the directed surface element.
The generalization of the conversion probability to

the case of an isotropic plasma in curved spacetime is
straightforward. The dispersion relation is given by

gµνkµkν + ω2
p = 0, (62)

which gives

Eiso 2

γ = |k|2 + ω2
p. (63)

From Eq. (19), this implies that family of surfaces Σk

collapses to a single emission surface Σ, on which

ωp = ma, (64)

which is independent of k. In that case, the unit normal
to surface Σ is given by

nisoµ =
∂µω

2
p√

∂(ω2
p) · ∂(ω2

p)
(65)

and the angle in Eq. (49) between this normal and the
phase velocity, is given by

cos θison =
k · ∂µω2

p√
[∂(ω2

p) · ∂(ω2
p)] [k · k]

(66)

We also generalize the conversion probability in the
isotropic case by modifying the flat space results accord-
ing to

va · ∇xE
iso
γ → (kµ/Eiso

γ ) · ∂µEiso
γ (67)

where in the isotropic case we have

∂µE
iso
γ =

∂µ(ω
2
p)

2Eiso
γ

. (68)

Collectively, this yields a conversion probability given by

P iso
aγ = πg2aγγ |Bext|2 sin2 θ

Eγ∣∣k · ∂(ω2
p)
∣∣ . (69)

If this is inserted into Eq. (48), the divergence occurring
in the conversion probability Eq. (69) (arising when k ·
∂ω2

p → 0), is regulated by the cosine angle in the measure
of Eq. (48), such that

P iso =

∫
d3k

∫
dΣcos θnvaE

iso
γ Paγ fa

=

∫
d3k

∫
dθdφ

√
|hk| Eiso

γ

πg2aγγ |Bext|2∣∣∂(ω2
p)
∣∣ . (70)

where
∣∣∂(ω2

p)
∣∣ =

√
∂(ω2

p) · ∂(ω2
p) is the modulus of

∂µ(ω
2
p). This is manifestly convergent.

Generalising Eq. (69) to the anisotropic case in curved
spacetime is non-trivial, as this involves formulating ki-
netic theory for photons in curved spacetime [63] – note
that this is similar to what is done for the case of scalars
in Ref. [64]. Such a generalization is clearly important,
but lies beyond the scope of the present work. Instead,
for the purpose of making progress, we employ a phe-
nomenological generalization of the conversion probabil-
ity similar to what is presented above, taking as before
the substitution

va · ∇x → (kµ/Eγ) · ∂µEγ (71)

to arrive at an ansatz for the anisotropic conversion prob-
ability in curved spacetime of the form

P aniso
aγ =

π

2

g2aγγ |Bext|2E4
γ sin

2 θ

cos2 θ ω2
p

(
ω2
p − 2E2

γ

)
+ E4

γ

Eγ

|k · ∂Eγ |
. (72)

Similarly, we generalize the angle in curved space by tak-
ing

cos θn =
k · ∂Eγ

|k| |∂Eγ |
(73)

which guarantees that the differential power computed
using the forward propagation approach is convergent.
However, since this is only a partial generalization to
curved spacetime, divergences are not canceled in the
backward ray tracing approach (see Appendix A for a
more detailed discussion of the origin of these diver-
gences). In order to regulate these divergences, we in-
troduce an IR cutoff in the backward ray tracing ap-
proach on the effective conversion length, defined by

Lc ≡ k̂ · ∂Eγ , which serves to exclude any contribution
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with Lc > 1km4. This should not be confused with any
type of formal regulatory procedure; rather it is a means
to excise points which lead to divergences that would oth-
erwise be regulated with a formal generalization of the
conversion probability to curved space time.

V. AXION DARK MATTER DETECTION
WITH NEUTRON STARS

Having outlined the generalized ray tracing procedure,
we can now return to the problem at hand – namely,
the application of these approaches to radio searches for
axion dark matter near neutron stars. We choose to fo-
cus in particular on spectral lines arising from a smooth
background distribution of axion dark matter, which are
among the most well-studied indirect probes of axions
in these environments [21, 22, 35, 36, 38, 39, 41, 43–
45, 48, 50, 65]. One should bear in mind, however,
that these tools are more broadly applicable to simi-
lar searches, such as those looking for transient lines
from the encounters of miniclusters and axion stars with
neutron stars [40, 42, 46, 47, 49], and broadband radio
searches generated from a locally sourced population of
axions [25, 51, 52].

We begin by establishing a set of fiducial parame-
ters which define our baseline model, given by an ax-
ion mass of ma = 10−5 eV, an axion-photon coupling
gaγγ = 10−12 GeV−1, a neutron star mass of MNS =
1M⊙, a neutron star radius of rNS = 10 km, a sur-
face dipolar magnetic field of B0 = 1014 G, a neutron
star rotational frequency of ΩNS = 1Hz, and a misalign-
ment angle θm = 0 radians. In what follows we normal-
ize the axion distribution to asymptotic number density
na,∞ = 0.45 × m−1

a GeV cm−3. Deviations from these
parameters below are always explicitly stated.

Each of the examples in this section is illustrated as-
suming a perfectly dipolar magnetic field and a GJ charge
density, defined by a e± charge density

nGJ ≃ 2Ω⃗ · B⃗
e

≃ ΩB0

e

(rNS

r

)3
[3 cos θm̂ · r̂ − cos θm] , (74)

where θm is the misalignment angle between the rota-
tional and magnetic axis, and the time dependence of the
plasma due to rotation has been embedded in the term
m̂ · r̂ = cos θm cos θ+sin θm sin θ cos(Ωt), where θ is a po-
lar angle given by taking rotational axis as the north pole.
Throughout this paper, we choose coordinates such that
θ also gives the angle between line of sight to an observer
and the rotational axis. The GJ charge distribution is
expected to be a reasonable approximation across most

4 We have verified that adjusting this threshold by a factor of 2
leads to negligible changes in asymptotic power.

of the closed field lines of standard pulsars, and near the
surfaces of dead neutron stars [38, 66, 67]. We revisit this
assumption when applying our results to the galactic cen-
ter magnetar, as the charge densities near such objects
are expected to be highly enhanced with respect to the
GJ model [68].
Before illustrating how each assumption and free pa-

rameter impacts the projected radio signal, we begin by
illustrating the agreement between forward and back-
ward ray tracing, using the formalism developed in the
preceding sections. In Fig. 4 we show the differential
power (averaged over the rotational period of the neu-
tron star) generated from resonant axion-photon transi-
tions, and computed using either an anisotropic, or an
isotropic, dispersion relation in curved spacetime. We
show results for an axion mass of 10−5 eV, but have also
confirmed agreement at other masses. These numerical
results confirm the equivalence of forward and backward
ray tracing, in accordance with the theory laid out in
Sec. II. This demonstrates explicitly the equivalence of
sampling the collision integral and explicitly evaluating
the asymptotic flux via back-tracing, with each scenario
manifested in the right- and left-hand side of Eq. (6),
respectively.
Before continuing, it is worth highlighting that achiev-

ing such a high level of agreement requires not only a
unified formalism (see Sec. II), but also high-precision
numerics, with the results being strongly sensitive to a
variety of different factors, such as: the initial conditions
of the photon in the backward ray tracing procedure,
the value of fundamental constants (we find maintaining
consistency across many decimal places is typically re-
quired), the precision of the ODE solver, etc. We now
go on to illustrate how varying the size of different phys-
ical phenomena discussed in this and proceeding sections
affect observational signatures from axion dark matter
conversion in neutron stars.

A. Physics of ray tracing

The goal of this subsection is to illustrate the impor-
tance of the various physical effects within our models,
which until now, have not yet been self consistently incor-
porated. This includes the combined impact of plasma
anisotropy and curved space on photon propagation, the
effect of varying the neutron star mass and radius, the
importance of including multiply reflected photons, and
the impact of simplifications to the asymptotic velocity
distribution of axions prior to in-fall. In Appendix B we
also examine the extent to which gravity can be encoded
in the initial conditions of the photons, and the impor-
tance of imposing the proper kinematic matching condi-
tion5. In each case, we analyze the impact of including

5 We reserve these comparisons for the Appendix as they are not
fully self-consistent, and as such both their implementation and
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FIG. 5. Effects of Plasma Anisotropy. Period-averaged differential power as would be seen by an observer viewing at
an angle θ with respect to the rotational axis. Results are shown for two choices of the axion mass (ma = 10−5 and 10−6

eV). The isotropic (‘iso’) case combines a dispersion relation gµνkµkν + ω2
p = 0 and conversion probability P iso

aγ of Eq. (69).

The anisotropic (‘aniso’) uses the dispersion relation of Eq. (39) and the conversion probability P aniso
aγ in Eq. (72). All results

include gravity. Plots are generated using the fiducial parameters of the main text.

FIG. 6. Neutron Star Mass (Renormalized). Same as Fig. 7, but setting the axion-photon conversion probability to
1 for all rays, and re-normalizing the weights of each ray by the factor Ri given in Eq. 75 (this re-normalization ensures the
sky-integrated power is fixed across all neutron star masses). Result is shown for an axion mass of ma = 10−5 eV (left) and
10−6 eV (right).

and/or neglecting an effect by computing the rotation-
period averaged differential power ⟨dP/dθ⟩ as a function
of the viewing angle, θ. We emphasize that it is not al-
ways straightforward to isolate individual effects, since
a self-consistent treatment usually involves not just one,
but many modifications. As an example, one can con-
sider that gravity plays a role not only in modifying the
trajectories of individual rays, but also enters the pho-
ton initial conditions (which in turn enter the conversion
probability, producing an effect both on the weighting of
photons and their propagation) and axion number den-
sity. We clarify below when isolating an effect breaks
self-consistency.

In the next two subsections, we begin by addressing
the question of the relative importance of treating the

interpretation is something of a subtlety that could cause confu-
sion for less familiar readers.

anisotropy of the plasma and curve spacetime, the former
having been treated in [22] and latter in [23].

1. Plasma Anisotropies

We now examine differential power for an axion mass
of 10−5 eV and 10−6 eV, assuming either an isotropic
or anisotropic plasma, which correspond to the disper-
sion relations of Eqs. (62) and (39), respectively. In
each case, we also adopt a conversion probability that
is self-consistent with the choice of dispersion relation;
namely, we use P iso

aγ (Eq. (69)) for the isotropic plasma,

and P aniso
aγ (Eq. (72)) for the anisotropic plasma. Mod-

ifying the photon dispersion relation only redistributes
outgoing photons in phase space, keeping modifying how
power is distributed on the sky while maintaining a fixed
sky-integrate power (assuming photon absorption can be
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FIG. 7. Neutron Star Mass. Same as Fig. 5, but showing the impact of varying the neutron star mass from 1M⊙ to
2.2M⊙. Result is shown for an axion mass of ma = 10−5 eV (left) and 10−6 eV (right). Bottom panel in each case shows the
relative difference (in percent) with respect to the fiducial neutron star mass of 1M⊙.

neglected). Meanwhile, changing the conversion proba-
bility between the isotropic and anisotropic cases affects
the overall normalization of the power, in accordance
with Eq. (20). In particular, this leads to a larger overall
power output for an anisotropic plasma. For compari-
son, we also plot a comparison between the anisotropic
and isotropic scenarios, but setting the conversion prob-
ability in both cases to 1 for all rays – this allows us to
isolate the impact of plasma anisotropy on the evolution
of photon trajectories. The effect of gravity is included
in all cases.

The results for isotropic and anisotropic plasmas are
shown in Fig. 5 (the left panel includes the conversion
probability, while in the right panel it is set to unity).
We see that for the parameters chosen, the axion mass
plays the dominant role in changing both the morphol-
ogy and the normalization of the power profile, with the
plasma anisotropy driving a more subtle, although non-
negligible, change of shifting power away from the poles
and equatorial plane – this latter effect arises from the θB
dependence in the photon dispersion relation. At larger
masses (ma = 10−5 eV), we see that differential power
varies by an order of magnitude across θ ∈ (0, π), while
the effect of assuming an isotropic plasma can induce
variations (for fixed values of θ) at the order of magni-
tude level, although it is worth noting that the average
difference is not so pronounced. For an axion mass of
10−6 eV (where the conversion surface extends to larger
characteristic radii), the differential power across the sky
can vary by more than three orders of magnitude, with
the effect of plasma anisotropy introducing as much as a
one order of magnitude shift in the power (although only
a certain viewing angles).

A range of approximations [21, 22, 36, 41, 44, 50, 69]
have been used throughout the literature to model
plasma physics in the context of axion searches, both
at the level of dispersion relations and production it-
self. In this work, we are now in a position to collate
these various approximations and make some assessment

of their relative importance from a observational point
of view. More explicitly, given the results reported in
Fig. 5, the question arises as to the significance of the dif-
ferences between simplified isotropic scenarios and more
complete anisotropic plasma descriptions, the latter com-
bining anisotropic effects both in dispersion relations and
conversion probabilities.
One should bear in mind that the results of Fig. 5

concern aligned rotators (θm = 0), whilst in general neu-
tron stars are non-aligned with θm ̸= 0. In the case of
a frequency domain analysis (in which one uses time-
integrated observations), the primary effect of inducing
a misaligned rotation axis is to isotropize the period-
averaged flux (see e.g. the differential power curves
in [22]).

2. Curved Spacetime Plasma Effects

Having discussed the effect of plasma anisotropy, we
turn now to the role of curved spacetime effects. We be-
gin by focusing on the role of gravity in altering the pho-
ton dispersion relation (and hence ray-propagation) [70],
and then return to the impact of gravity on the local
intensity emitted at the conversion surface.
In order to understand the effect of gravity we begin

by running the ray tracing analysis using a variety of dif-
ferent neutron star masses ranging from MNS = 0.5M⊙
to MNS = 2.2M⊙. We begin by isolating the effect of
gravity on the propagation of photons by re-scaling the
photon weights in such a way that the sky-integrated
asymptotic power remains fixed. This is done by set-
ting the conversion probability of each ray to one, and
re-scaling each photon by a factor

Ri ≡
1 cm−3

na(ri)

ma

|⃗ka(ri)|
1√

1− rs/ri
, (75)

where ri is the initial radius of the photon at the res-
onance. Note that the choice of normalization of the
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axion number density and photon momentum are arbi-
trary, and thus one should not attempt to interpret the
normalization of the differential power as being physical.
The result of this procedure is shown for two choices of
axion mass in Fig. 6. For ma = 10−5 eV (i.e. when the
conversion surface is close to the neutron star), the effect
is most pronounced near the magnetic poles, leading to
a variation in the differential power up to a factor of ∼ 5
– at other viewing angles, however, the effect is typically
no more than factor of two. As expected, the effect of in-
creasing the neutron star mass leads to an isotropization
of the radio flux [23]. For smaller axion masses, the con-
version surface shifts away from the neutron star and the
effect of gravity on the propagation of rays is suppressed;
specifically, for the case of ma = 10−6 eV, we find gravity
only modifies ray propagation at theO(10%) level. In the
Appendix, we attempt to understand the extent to which
previous approximations adopted in [22] are valid; in par-
ticular, we show that embedding the effect of gravity into
the initial conditions, but neglecting gravity during the
propagation, tends to induce negligibly small errors in
the differential power (we caution, however, that this is
an empirical result, and is not guaranteed to hold in all
contexts).

We now return to analyzing the full effect of gravity,
which enters not only the propagation of rays but also the
local power emitted from the resonant conversion surface.
We plot in Fig. 7 the impact of increasing the neutron
star mass from 1M⊙ to the maximally allowed value of
∼ 2.2M⊙ for two choices of axion masses (unlike Fig. 6,
here we maintain the conversion probability and the ap-
propriate weights of the rays). Fig. 7 illustrates that the
neutron star mass plays a non-negligible role in the pre-
diction of the radio flux, and should likely be included in
future modeling.

In Fig. 8 we illustrate the impact of varying the neutron
star radius, assuming a neutron star mass of either 1M⊙
or 2.2M⊙. Here, we see that the characteristic neutron
star radius adopted in previous works tends to lead to an
underestimation of the radio flux by a factor of ∼ 2 – this
effect is nearly uniform over the sky, and arises primarily
from the fact that the increase of radius (at fixed surface
magnetic field strength) tends to increase the net surface
area over which resonant axion-photon transitions take
place.

The initial ray tracing performed in Refs. [22] and [23]
had observed notable deviations in the inferred time pro-
files induced by resonant axion-photon mixing (note that
time variation is directly related to the variation of the
differential power with viewing angle, θ). Ref. [23] had
attributed this difference to the effect of gravity – it was
argued that gravity tends to isotropize the signal, wash-
ing out the strong variation observed in the time profiles
of [22]. Here, we show that this conclusion is not correct;
instead, the variation observed in Ref. [22] was larger due
to three contributing factors: (i) [22] focused on lower
mass axions, which have larger time variation due to the
larger characteristic conversion surface, (ii) Ref. [23] had

FIG. 8. Neutron Star Radius. Same as left panel of Fig. 5
but varying the neutron star radius and neutron star mass
between rNS ∈ [10, 12] km and MNS ∈ [1, 2.2]M⊙. As be-
fore we show in the bottom panel the relative difference (in
percentage) with respect to the fiducial models (taken to be
those with rNS = 10 km).

not included multiply reflected photons, which tends to
increase the time variation (see Fig. 9, and the follow-
ing subsection), and (iii) the anisotropy of the plasma
at low masses can further enhance the variation in the
time-domain.

3. Multiply Reflected Photons

The backward ray tracing method [23] is essentially
a standard approach to the problem of radiative trans-
fer [59]. Photon production is calculated via an inte-
gral along the photon worldline, as depicted in Eq. (4).
As the photon worldline is back-propagated, it can en-
counter multiple sites of photon production from axions.
This happens wherever axion and photon dispersion re-
lations become degenerate, corresponding to a family of
discrete values λi of the worldline parameter at which
photons are produced. In the original work [23] we only
considered the first level crossing6 and λ = λ1. In the
present work, we include contributions to the asymp-
totic value of the photon distribution fγ(λ → ∞) from
all production sites along the photon worldline, so that
fγ(λ → ∞) =

∑
i fγ(λi). This effect is especially pro-

nounced within the throats of the magnetosphere, where
the worldines of photons experience multiple reflections,
causing them to repeatedly encounter level-crossings.
In Fig. 9, we illustrate the impact of including these

multiply reflected photons for two different axion masses.
Here, one can see that accounting for multiply reflected
photons tends to induce a factor of ∼ 2 enhancement in

6 Strictly speaking, we multiplied fγ(λ1) by a factor 2 (as in [21])
to model the effect of photons which are produced by axions
moving in the opposite direction to the photon.
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FIG. 9. Multiple Photon Production. The impact of in-
cluding multiple resonant photon productions along the pho-
ton worldline in backward ray tracing. For ma = 10µeV and
the same fiducial NS parameters used in previous plots.

FIG. 10. Finite Line Width Effects. The impact of in-
cluding the velocity dispersion (as opposed to adopting a delta
function on the asymptotic speed |v⃗∞| = 220 km /s for two
choices of the axion mass.

the differential power for viewing angles that are roughly
aligned with the throats of the magnetosphere. This
effect is enhanced for smaller axion masses, where the
throats become more prominent.

4. Asymptotic Velocity Distribution

The examples provided thus far have assumed for sim-
plicity that the asymptotic axion speed distribution can
be treated as a delta function fixed to |v⃗| ∼ 220 km/s,
corresponding to a monochromatic photon signal. This
is the assumption adopted in [23, 39, 50], while [22, 44]
treated the full Maxwellian distribution. In Fig. 10, we
show that for both axion masses of interest, the simplifi-
cation of neglecting the width of the asymptotic energy
distribution tends to induce negligible variations in the
inferred power. Importantly, however, this statement is
only valid when the neutron star is assumed to be at rest
with respect to the galaxy, and may not hold for strongly

boosted neutron stars.

VI. GALACTIC CENTER MAGNETAR

The Galactic Center magnetar SGR J1745–2900 has
an inferred dipolar field strength of 1.6× 1014G, a rota-
tional period P ∼ 3.76s, and has a two-dimensional pro-
jected distance from the Galactic Center of ∼ 0.17pc [71],
making it a promising target for axion searches. SGR
J1745–2900 is in fact frequently adopted as a benchmark
for developing projected sensitivities for future observa-
tions [21, 22, 36, 39, 44], and various groups have at-
tempted to place constraints using existing radio obser-
vations (see e.g. [48]). All analyses to date have assumed
that the charge distribution can be described by the GJ
model, which is derived by determining the minimal co-
rotating charge density needed to screen the product of

E⃗ · B⃗. Magnetars, however, are expected to have magne-
tospheres which differ markedly from the standard pul-
sar population, with charge densities greatly exceeding
the minimal co-rotating density. Bearing in mind that
the current understanding of magnetar magnetospheres
is far from complete (see e.g. [72, 73] for recent reviews
outlining the current understanding of magnetars), we
describe below the expected properties of these systems,
and use the techniques outlined in the previous section to
revisit sensitivity estimates that could be achieved with
existing and future data. Needless to say, the validity
of these projections hinges upon a variety of rough ap-
proximations, and thus they should be treated with some
skepticism; nevertheless, these projections serve to an-
swer the important question of whether magnetars could
be useful in the future to probe regions of axion param-
eter space which are conventionally inaccessible to other
indirect axion searches.
Magnetars are very young and highly magnetized ob-

jects whose bright X-ray emission is powered magneti-
cally, rather than rotationally (implying the energy losses
exceed the spin-down power of the neutron star), see e.g. ,
[73]. These objects are strongly variable and exhibit a
broad range of phenomenon ranging from X-ray bursts,
glitches and antiglitches, non-uniform spin-down, giant
flares, and even fast radio bursts (see, e.g. , [74] for a re-
cent association between fast radio bursts and a nearby
magnetar).
It is believed that the variable magnetar activity is

driven by the evolution of the ultra-strong magnetic field
– a shifting in the structure of the magnetic field inter-
nal to the neutron star deforms the crust, inducing a
strong shearing of the crust which subsequently drives
electric currents into the magnetosphere. The net result
is a twisted, nearly force-free, magnetosphere threaded

by strong electric currents j⃗ ∼ ∇ × B⃗. Phenomena like
flaring can then be explained, e.g. , via the presence of
instabilities that appear as the magnetic twist exceeds a
critical threshold (see e.g. , [68, 72, 73, 75]).
In the context of axions, there are two important dis-
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FIG. 11. Magnetar Plasma Distributions. Left: Log-10 of the plasma frequency in the GJ model for an aligned rotator
with B0 = 1.6 × 1014 G and P = 3.76 s. The vacuum regions defining charge separation in the GJ model can clearly be seen
extending across the diagonals. Center: Log-10 of the plasma frequency as computed using Eq. (80) for the same parameters.
Right: Log-10 of the ratio of the plasma frequency in the preceding models. In all cases the open field lines have been excised
(shown with white hatched region) as the charge densities are expected to differ notably from the minimal force-free values in
this region.

tinctions between the magnetospheres of magnetars and
those of standard pulsars. First, the assumption of a
purely dipolar field is broken – the twisted magneto-
sphere induces a complex topology to the magnetic struc-
ture, and the magnetic field strength may easily exceed
the inferred dipolar value [76–80]. The second impor-
tant distinction comes from the fact that the minimum
charge density flowing from the twisted field configura-
tion greatly exceeds the minimum co-rotational charge
density identified in the GJ Model. This can be seen by

noting that the force-free condition, E⃗ · B⃗ = 0, implies
a minimal charge density near the neutron star given
by [75]

ρ = ∇ · E⃗ = Ω ·
[
−2B⃗ + r⃗ × (∇× B⃗)

]
= ρGJ + ρtws ,(76)

where the first term is the GJ charge density, and the
second ρtws is the minimal charge density required to
support a twisted field configuration; note that for non-
twisted field configurations (as, e.g., is the case with a

standard dipolar field) ∇ × B⃗ = 0, and thus ρ ∼ ρGJ

(at least in the closed zone near the neutron star, where
the force free condition is expected to be satisfied). The
twisted field configuration expected to arise in the mag-
netospheres of magnetars is supported and stabilized by
the presence of a strong electromagnetic current |j| ∼
∇× B⃗ ≫ ρGJ, which is sourced from e± pair production
processes near the neutron star. The electron/positron
number density ne± can be derived by writing the local
charge and current density as

ρ = e(n+ − n−) (77)

|⃗j| = e(n+ v+ − n− v−) , (78)

where n± and v± are the number density and velocity
of the e±, and then directly solving for n+ + n−; for a
semi-relativistic plasma [68] with |j| ≫ ρ this quantity is

roughly bounded to be n± ≳ 2|⃗j|/e [75, 81].

Ref. [75] investigated the charge distribution in the
context of a globally twisted dipole configuration, show-
ing this leads to a characteristic current on the order of
(see also [81])

j⃗(r, θ) = ∇× B⃗ ≃ sin2 θ ψ

r
B⃗ . (79)

Introducing a charge multiplicity factor λ (defined with

respect to the minimal charge density ∼ 2|⃗j|/e) and as-
suming the magnetic field strength is purely a function
of radius, decaying as a dipolar magnetic field |B| ∼
B0 (rNS/r)

3, one finds

ne ∼ λ
ψ

e r
sin2 θ B0

(rNS

r

)3
(80)

∼ 7× 1015

cm3
λ sin2 θ

( ψ

0.2

)( B0

2× 1014 G

)(rNS

r

)4
.

Near the neutron star surface, the charge density implied
by Eq. (80) can exceed the GJ value (see Eq. (74))

nGJ
e ∼ 2× 1012

cm3

(3.76
P

)( B0

2× 1014 G

)(rNS

r

)3
(81)

by a factor ne/n
GJ
e ∼ 103×λ, which is in agreement with

inferences of the charge densities obtained from observa-
tions of the resonant cyclotron absorption of X-rays [82].
Notice that Eq. (80) implies the magnetospheres of mag-
netars may support resonances for axions with masses
near, and above, 10−2 eV.
One of the fundamental questions sitting at the fore-

front of the field for many years is how such strong cur-
rents are sustained in magnetar magnetospheres. Re-
cent work on the electrodynamics in super-QED field
strengths has shown that the hard X-ray spectrum ex-
tending to energies E ≳ 10 keV observed in many mag-
netars can arise from a highly collisional semi-relativistic
plasma with a characteristic density 10− 20 times larger
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than the minimal current density given in Eq. (79).
These enhanced densities are sustained via a combination
of ohmic heating and pair creation, and may be neces-
sary in order to explain a number of observed phenomena
including rapid X-ray brightening, concentrated thermal
hotspots, and thermal X-ray emission [68].

The goal of this section is not to provide an accurate
description of axion conversion in magnetar magneto-
spheres, but merely to point out the extent to which the
axion searches performed in, e.g. , Ref. [48], are mod-
ified when more realistic assumptions are adopted. In
this vein, we take four fiducial models, which, in spite
of their simplicity, are expected to give some rough es-
timation of the sensitivity that radio experiments could
have to axion-photon conversion in these systems. These
models consider two distinct values of magnetic fields,
one with the minimal value B0 = 1.6 × 1014 G (cor-
responding to the pure dipolar magnetic field) and the
other with B0 = 4× 1014 G (while this number is some-
what ad hoc, intended to show the impact of a moderate
magnetic enhancement although an order one enhance-
ment, we note that it could be seen as roughly consistent
with the twist factor inferred in [83]), and two distinct
values of charge multiplicity parameter λ (specifically, we
take a uniform value of λ = 1, and λ = 20); note that the
λ = 1 is intended to represent a minimal lower bound,
with λ ∼ O(10) being closer to the value predicted
by [68]. We therefore consider four magnetar models,
M1: λ = 1, B = 1.6×1014 G, M2: λ = 20, B = 1.6×1014

G, M3: λ = 1, B = 4×1014 G, M4: λ = 20, B = 4×1014

G.

In order to simplify the analysis, we treat the mag-
netic field as being purely dipolar (despite this assump-
tion being inconsistent with the adopted charge den-
sity magnetic field structures); in general, the magnetic
field structure should be obtained by solving the Grad-
Shafranov equation (see e.g. [84]), however including
such an effect is beyond the scope of this work. We
note, however, that there are three effects which are ex-
pected to arise as one includes the geometric effects ap-
pearing in twisted configurations. First, O(1) angular
factors shift the photon production efficiency, and there-
fore induce comparable shifts in the photon anisotropy
(as compared with a dipolar field configuration). Next,
the radial dependence of twisted magnetic fields is mod-
ified with respect to the dipolar case (falling as r−2+p,
with p < 1 for a twisted field and p = 1 for the dipolar
field) [75, 85]. Finally, and most importantly, the optical
depth for highly twisted fields can be increased. For the
moment, we estimate the optical depth using the dipolar
configuration but caution that a more careful assessment
of this effect may be needed in the future.

In order to be conservative, we choose to remove axion-
photon conversion in open magnetic field lines, since ac-
tive pair production and current flows in these regions are
expected to require a more sophisticated level of model-
ing. These excised regions correspond to the white hatch-
ing in Fig. 11. Using Eq. (80) we see that field lines are

characterized by the curves r/ sin2 θ = L, where L gives
the maximal radial distance of the field line from the
neutron star. Open field lines are those which extend
beyond the light-cylinder at rLC = Ω−1

NS, i.e., they satisfy

L ≥ Ω−1
NS. When considering axion-photon conversion,

we do not include photon production occurring on open
magnetic field lines.

As a word of caution, dense return currents running
along the closed field line could produce secondary ef-
fects not included by this ‘cutting’ procedure, such as
the redirection and funneling photons near the conver-
sion surface. These effects are not included here, but will
be investigated in future work.

Resonant cyclotron absorption, occurring when the
frequency of the radiation matches the cyclotron fre-
quency ω = ωc, can be increasingly important for low-
frequency radiation emitted near highly magnetized ob-
jects (Ref. [22] had shown using the GJ model that the
optical depth can be O(1) for the Galactic Center mag-
netar). Assuming the cyclotron resonance occurs at large
distances from the magnetar where the trajectories can
be approximated as radial, the optical depth is roughly
given by [22]

τ ∼ π

3

(
ω2
p

ω

)
r , (82)

where it is understood that all quantities are evaluated
at the point of resonance.

The characteristic charge densities spanned by Eq. (80)
suggest that magnetars will be efficiently producing radi-
ation across frequencies from O(1) GHz - O(5) THz, and
thus we use a combination of sub-mm telescopes to de-
velop our sensitivity projections. In particular, we adopt
projections for current telescopes based on observations
by the Green Bank Telescope (GBT), the Atacama
Large Millimeter Array (ALMA), and the Stratospheric
Observatory for Infrared Astronomy (SOFIA), which
have broad bandwidth coverage over the O(10)GHz-THz
regime. In addition, we include a separate set of projec-
tions for the Square Kilometer Array (SKA), which will
cover frequencies from 50 MHz to 24 GHz. We compute
the radio spectrum at seven fixed axion masses, corre-
sponding to observing frequencies of ∼ 2.4, 20, 35, 100
GHz, 500 GHz, 1 THz, and 4 THz. SKA observations
will cover the lowest two frequency bins, and assuming
a system equivalent flux density SEFD = 0.098 Jy, a
bandwidth of 10−5 × ma, and an observing time of 10
hours, SKA will have sensitivity (at the 95% confidence
level) to radio lines at each observing frequency of 5 and
2µJy [107]. We use the GBT telescope to establish sen-
sitivity in the lowest three frequencies – here, we adopt
a sensitivity (across all frequencies) consistent with the
quoted 95% confidence upper limit used in the analysis
of [48], Slim ∼ 0.3 mJy (computed using a bin width
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FIG. 12. Axion Searches with Galactic Center Magnetar. Projected sensitivity to the Galactic Center magnetar SGR
1745-2900 using four distinct models based on the magnetar charge distribution given in Eq. (80); model M1 is defined taking
λ = 1, B = 1.6 × 1014 G, model M2 for λ = 20, B = 1.6 × 1014 G, model M3 with λ = 1, B = 4 × 1014 G, model M4 is
defined with λ = 20, B = 4 × 1014 G. Results are shown assuming a distance of d = 8.3 kpc, an NFW profile (with rs = 20
kpc, and ρ⊕ = 0.346GeV/cm3), MNS = 1.4M⊙, rNS = 12km, and θm = 0. Left panel corresponds to sensitivity that
could be achieved using current telescopes (namely a combination of GBT, ALMA, and SOFIA), while the right panel includes
projected sensitivity from SKA. The vertical bars on each point reflect the 1σ variation in the inferred limits which are obtained
by randomly sampling the orientation of Earth as defined with respect to the rotational axis. Shown for reference are current
the QCD axion band (purple) [86], and constraints from globular clusters (gray) [87], CAST (dark blue) [88], axion haloscopes
(gold) [89–106], pulsar polar cap cascades (light blue) [25], and GBT observations of the Galactic Center (green) [44].

of δf ∼ 28 MHz). At 100 7 and 500 GHz, we adopt a
sensitivity for ALMA consistent with the quoted capa-
bility for 60 seconds of observations and a line width of 8

δf/f ∼ 10−6, which corresponds to Slim ∼ 5 mJy and 25
mJy for 100 and 500 GHz respectively [108]. Note that
GC magnetar has been observed up to frequencies of a
few hundred GHz, with the observed flux density sitting
below the 10 mJy level [109]. The sensitivity of the two
highest frequency bins is set to 100 mJy, which is roughly
the 4σ line sensitivity for 900 seconds of observation esti-
mated in [110]. In general, one would either marginalize
over the unknown parameters, or take the value which
give the most conservative constraints [48, 50] – since
our goal, however, is only to provide an indicative idea
of rough sensitivity, we simply fix θm = 0, d = 8.3 kpc,
MNS = 1.4M⊙, and rNS = 12 km. Note that since we do
not vary θm, which plays an important role in determin-
ing the line width, we make the simplifying assumption

7 GBT can also observe at 100 GHz – using the online sensitivity
calculator for GBT, we find a couple hours of observation tends
to give comparable sensitivity estimates.

8 The line studied here is expected to be slightly wider than this
level, however the sensitivity scales weakly with bandwidth, and
can easily be compensated for using additional observing time.

that the entirety of the signal is contained within a sin-
gle frequency bin – this bin is assumed to have a value of
10−5 ×ma for all telescopes except GBT, where we take
the bin width used in the observations of Ref. [48].

The projected sensitivity to the axion-photon coupling
in each of our four magnetar models M1-M4 motivated
above, is shown in Fig. 12. In this figure we show the
flux predicted at a typical viewing angle, defined by gen-
erating 103 samples and selecting the median value, and
the ±1σ variations about the median value. Fig. 12 illus-
trates that SGR 1745-2900 may produce observable radio
emission up to ∼ 4THz, however only if there exists a siz-
able non-dipolar contribution to the magnetic field and
the charge density exceeds the minimal expected value by
an order 10 value – nevertheless, emission up to ∼ 500
GHz is still expected across all models, potentially al-
lowing parts of the QCD axion band to be explored us-
ing existing instruments. These sensitivities should still
be interpreted with caution, as systematic uncertainties
have not been folded in, and the impact of non-dipolar
field modeling has not yet been explored.
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VII. CONCLUSIONS

In this work, we have constructed a generalized ray
tracing framework capable of analyzing radio signals
sourced from resonant axion-photon mixing in astro-
physical plasmas, focusing in particular on the treat-
ment of these interactions in highly magnetized plas-
mas and curved spacetime. We have explicitly shown
how these calculations can be self-consistently embed-
ded using either a ‘forward ray tracing’ approach (in
which one samples from the photon phase-space at pro-
duction, propagates the photons to far distances, and re-
constructs observables from the final photon distribution)
or a ‘backward ray tracing’ approach (the more conven-
tional ray tracing approach, in which one propagates rays
from an observing plane far away from the source to the
point of production); while these approaches use different
methodology, we have shown using detailed phase-space
arguments (Sec. II-III) that these must yield identical re-
sults. We then demonstrated this spectacular agreement
explicitly through extensive numerical comparison of the
two codes. Note that this is a highly non-trivial result,
as even small deviations in the definitions of fundamental
constants or accumulated errors in the ODE solvers can
generate sizable effects.

Previous work on ray tracing in astrophysical axion
searches have included only a subset of the effects stud-
ied here, focusing either on the propagation of photons
through a magnetized plasma in flat space [22] (using
forward propagation) or through an isotropic plasma in
curved space [23] (using backward propagation). This
work unites these frameworks and allows for a thorough
investigation of each of the assumptions adopted in the
literature thus far. Our primary conclusions are as fol-
lows:

• In curved space, the anisotropy of the plasma tends
to squeeze the radiated power to small angles (but
away from the magnetic pole). This can cause the
observed power to deviate from the isotropic sce-
nario by potentially an order of magnitude or so,
depending on the axion mass and the viewing an-
gle.

• For large neutron star and axion masses, gravity
can induce sizable modifications to photon trajec-
tories, and tends to isotropize the radiated flux.
For small neutron star and axion masses this effect
becomes negligible. Interestingly, we find that pre-
vious approaches which had included the effect of
gravity in the initial conditions but not in the prop-
agation of photons are extremely accurate, despite
not being self-consistent.

• Varying the neutron radius within a range of values
permitted by the equation of state can lead to a
factor of∼ 2 shift in the sky-integrated power. This
effect is predominantly driven by the change in the
resonant surface area.

• The improved backward ray tracing algorithm now
accounts for multiple photon production sites along
photon worldlines (see Sec. VA3). Including this
effect can enhance the total power by a factor of a
few (the effect being more pronounced for smaller
axion masses). Crucially though, the inclusion of
these effects is needed to have agreement between
the two ray tracing approaches used in this paper.

In this work (and Ref. [54]), we have gone to great
lengths to fully develop kinetic theory in anisotropic
media, which has additional complications relative to
isotropic backgrounds. In particular, generalizing the
dispersion relation for photons in anisotropic plasmas to
curved spacetime [57, 60–62], is somewhat more involved
that an isotropic plasma [53, 58]. Similarly, the geom-
etry of the conversion surface is also more complicated
(both in flat and curved spacetime), and consists of a
foliation of multiple production surfaces. In turn, these
correspond to more complicated kinematic matching of
axions and photons at the conversion surface.
Related to this discussion of anisotropic media, we

have paid particular attention to including curved space-
time effects in our routines, which are required to self-
consistently incorporate gravity across the full range of
physical effects. For self-consistency, gravity should also
be incorporated into the conversion probability itself,
such that when integrating over phase-space (see Sec.
III) the resulting power is convergent. In this work, and
Ref. [54], we have shown that in flat space, both the
isotropic and anisotropic conversion probability gives fi-
nite results. In Sec. IV, we also offered arguments for
generalising the conversion probability in isotropic plas-
mas to curved spacetime, showing that this generalized
form of the conversion probability leads to convergent
results. One of the remaining open problems, however,
remains a full generalization of the anisotropic conversion
probability to curved spacetime. Presumably the answer
lies somewhere in generalising the phase-space and ki-
netic theory arguments of the present work using tech-
niques laid out in Refs. [63, 64], though we leave such
derivations for future work.
With a view to observations, in Sec. V, we have used

our newly developed ray tracing framework to revisit sen-
sitivity estimates of radio and microwave telescopes to
spectral lines emanating from Galactic Center magnetar
SGR J1745-2900. Here, we provided an extensive discus-
sion on the state-of-the-art knowledge of charge distri-
butions in magnetars, showing that previous approxima-
tions relaying on the Goldreich-Julian charge distribution
have likely underestimated the characteristic plasma fre-
quency near the surface of the star. Using four distinct
models, we show that the high plasma densities near the
surface of the magnetar are capable of generating electro-
magnetic signatures up to the O(THz) regime, with cur-
rent and future infrastructure potentially covering signif-
icant unexplored regions of axion parameter space. This
work provides greater motivation for understanding mag-
netar charge densities, as such searches may provide one
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of the unique avenues for indirectly probing this well-
motivated region of axion parameter space.

Ray tracing has proven to be an invaluable tool in
astronomy and astrophysics, and in recent years has
emerged an increasingly important approach in the in-
direct search for axions. This paper has developed the
fundamentals necessary to incorporate ray tracing into
astrophysical axion searches, and has for the first time
investigated and quantified the validity of a variety of dif-
ferent assumptions adopted in previous applications and
searches. While there still exist open questions which
need to be addressed, such as the impact of uncertainties
in the charge distribution and near-field magnetic field
configuration, and how axions and photons mix in high
magnetized environments, the framework developed here
lays the much needed groundwork for the future devel-
opment of indirect axion searches in neutron star mag-
netospheres.
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Appendix A: Anisotropic Conversion in Curved
Space - an Open Problem

At this point, a few remarks are in order about the
present difficulties in generalising the results of this sub-
section to curved space time. Firstly, following results
of Ref. [54], one could conjecture that the width of the
resonance can be inferred from the governing Boltzmann

equation projected along photon-wordlines, which gives

dfγ(x(λ), k(λ)

dλ

= g2aγγ
∣∣k · F̃ext · ε

∣∣22πδ (gµν(λ)kµ(λ)kν(λ)−m2
a

)
fa .

(A1)

Clearly, in an isotropic medium, the argument of the
delta function just becomes ω2

p − m2
a, and we recover

the result above when performing the integration over
λ, which gives terms in the denominator proportional to
dω2

p/dλ ∝ k · ∂µ(ω2
p). For a more general dispersion rela-

tion, however, the integration of the delta-function yields

fγ =
πg2aγγ

∣∣k · F̃ext · ε
∣∣2

|k · DH| fa (A2)

where H is the photon-Hamiltonian defined in [54] and

Dµ =
∂

∂xµ
+ Γσ

µρkσ
∂

∂kρ
, (A3)

is the generalized covariant-derivative appearing in [63,
64]. To arrive at Eq. (A2) we used Hamiltonians equa-
tions (Eq. (2)) for xµ(λ) and kµ(λ) to express their λ
derivatives in terms of derivatives of H. We also assumed
a Levi-Civita connection in which gµν is covariantly con-
stant, so that ∇σgµν = 0, allowing us to re-express par-
tial derivatives of ∂σg

µν in terms of Cristoffel symbols
Γσ
µρ. The following ansatz would then lead to a conver-

sion probability

Paγ =
πg2aγγ

∣∣k · F̃ext · ε
∣∣2

|k · DH| . (A4)

Clearly a divergence occurs when k is perpendicular
to DH. One might therefore hope that this diver-
gence is regulated by the phase-space measure appear-
ing in Eq. (20); however, the key difficulty is generalis-
ing Eq. (20) to curved space is to generalize the step of
Eq. (17), which proves difficult since one picks up ad-
ditional derivatives of the metric in the term gµνkµkν ,
which at face value do not lead to appropriate cancella-
tions with the phase space measure. The authors suspect
that there may exist a subtlety in the generalization of
this formula to curved space, however this is highly non-
trivial and thus it will become the subject of future work.

Appendix B: Comparison with Previous
Approximation Schemes

In the following, we attempt to make connections
with simplifying approximations adopted in previous
work [22]. Despite the fact that these simplified ap-
proaches are not fully self-consistent, we show the net
effect on the differential power is rather minimal.
The first simplifying approximation, applied in the

context of forward ray tracing [22, 41], is that gravity can
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FIG. 13. Artificial Gravity. Result of adopting initial conditions consistent with photon production from axions near a
neutron star with mass MNS = 1M⊙ (left) and 2.2M⊙ (right), but setting MNS = 0 in the ray tracing procedure.

FIG. 14. Kinematics & Conversion Surface Geometry.
Same as left panel of Fig. 5, but illustrating the impact of
incorrectly imposing a resonant condition of ma ≃ ωp, rather
than ka

µ = kγ
µ.

be embedded in the initial conditions of the photon, but
neglected in the propagation. That is to say, the initial
energy and momentum of the photon are consistent with
being produced within a gravitational potential sourced
a neutron star of mass MNS, but MNS is set to zero in
Hamilton’s equations (Eq. 2). The results of performing
this ‘flat’ analysis are shown in Fig. 13 for two choices of
neutron star mass, and both an anisotropic and isotropic

dispersion relation. Here, we see that the impact of the
flat approximation is typically extremely small. Impor-
tantly, this approximation scheme is not equivalent to
taking MNS → 0 (since the initial conditions for the pho-
ton momentum here are fixed in both the curved and flat
space analysis), and thus we do not expect the results to
mimic those of Fig. 6.

The second approximation, which was adopted in
[22, 41, 49], assumes the resonance occurs along a sin-
gle two-dimensional surface appearing at ma ≃ ωp. As
mentioned in the main text (see Sec. IVB), resonances
occur across a foilation of surfaces, defined by kaµ = kγµ,
which can extend to slightly larger and smaller radii than
what one would infer by applying the former approxi-
mation. In Fig. 14, we show the relative importance of
including, or neglecting, the proper kinematic matching
condition. Note that in the latter case, in order to en-
sure the photon in on-shell, we set initial conditions of
photons by taking ωγ = ωa and the unit 3-momentum

vectors to satisfy k̂a = k̂γ . The normalization |k| of the
photon 3-momentum is then inferred from Eq. (38). The
radial width of the foliation of surfaces defined by the
appropriate resonance condition kaµ = kγµ tends to be be-
low the 10% level, and thus the effect is not expected to
be large; this expectation is confirmed in Fig. 14, which
shows that the differential power is only slightly modified
for a narrow region of viewing angles.
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