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Abstract: We compute the perturbative component of the fragmentation function of

the b quark to the best of the present theoretical knowledge. The fixed-order calculation

to order α2
s of the fragmentation function at the initial scale is matched with soft-emission

logarithm resummation to next-to-next-to-leading logarithmic accuracy, so that order-α2
s

corrections are accounted for exactly, and logarithmically enhanced contributions from

loops of b quarks are included. This requires the calculation of the Mellin transform of

the order-α2
s result in the whole complex plane for the Mellin variable, which we provide

for the first time for all the fragmenting partons. Evolution is performed to next-to-next-

to-leading log accuracy, and mixing with the gluon fragmentation function is taken into

account. The perturbative fragmentation functions are made available via LHAPDF grids.
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1 Introduction

The production of heavy quarks (charm, bottom, top), possibly in association with other

particles, is a particularly important class of processes at colliders. Not only they provide

key information for advancing our understanding of strong and electroweak interactions

in the Standard Model (SM), but their very distinctive experimental signatures typically

enter as background in many SM measurements and beyond-the-SM searches. From the

theoretical point of view, reliable and accurate predictions for these processes that match

the current and foreseen experimental precision, are necessary. This is, however, a tall

order. Fixed-order predictions are, in general, not accurate enough and terms appear

that hamper the convergence of the perturbative series and need to be included at all

orders. A class of such terms involve mass logarithms, i.e. powers of log Q2

m2 , where m

and Q are the heavy-quark mass and the typical energy scale of the process, respectively.

When these terms are large, an all-order resummation, which can be achieved by means of

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of fragmentation functions

(FFs), becomes necessary. At past colliders and at the LHC this is important for the

bottom and the charm quark. For top quarks such effects become relevant at transverse

momentum above a few TeV, a regime which is marginal at the LHC but possibly of

interest at future high-energy colliders. FFs make it possible to organise terms of order

αps logq Q
2

m2 and to systematically resum them via the DGLAP evolution, thus obtaining

physical predictions at a given logarithmic accuracy. Nowadays, the DGLAP evolution is

implemented in several computer codes, such as QCDnum [1], ffevol [2], APFEL [3], MELA [4],

EKO [5], up to next-to-next-to-leading order (NNLO).

The fragmentation function of a b quark is a special case: not only its dependence on

the hard scale Q is under control in perturbation theory via DGLAP equations, but also the

initial condition for evolution, typically given at a scale of the order of the b-quark mass,
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can be computed perturbatively [6–10]. Such perturbative calculation becomes unreliable

in the kinematical regime where the produced b quark carries most of the available energy,

and therefore the recoiling radiation is soft, giving rise to a further class of large logarithms.

The formalism for the resummation of soft emission logarithms is outlined in [8], where

resummation is explicitly performed to next-to-leading logarithmic (NLL) accuracy.

We stress that having an excellent perturbative description of FFs represents only part

of the solution to the problem of providing an accurate description of heavy-quark related

processes. The perturbative result has to be complemented with a non-perturbative part

which parametrises the transition from the heavy quark to the corresponding flavoured

hadron. This contribution cannot be computed in perturbation theory, and is usually

extracted by a direct comparison to data. Once the perturbative part is known, the ex-

traction of the non-perturbative contribution to the FF is a well-defined and independent

phenomenological task. Though relevant to provide physical predictions to compare with

experiment, it is not addressed in this work. The interested reader can find applications

to the case of heavy-quark production in leptonic collisions in [7, 8, 11, 12], of the bottom

quark in top decays in [13–15], and of the Higgs decay to heavy quarks in [16].

In this work, we improve the perturbative description of the heavy-quark FF, using the

framework to compute the coupled evolution of the b-quark fragmentation with the gluon

and the other partons at NNLO accuracy described in [17] which builds upon MELA [4]. We

asses the impact of resummation of soft logarithms on the initial condition for the evolution

of the b fragmentation function Db(x, µ
2
0F ) by implementing the resummation formalism

of [8] up to next-to-next-to-leading logarithmic accuracy (NNLL in the following). Resum-

mation at NNLL of the initial condition was already performed in [12]. In that work the

resummed result was matched to the exact perturbative calculation at next-to-leading order

(NLO). We improve on this result in three ways. First, we compute the process-dependent

component of the resummed initial condition in such a way to reproduce the exact order-α2
s

result of [9] to NNLL accuracy, including the contributions originating from loops of heavy

quarks. Note that such contributions had not been accounted for in previous works [12, 18].

Second, we match the NNLL resummed result to the exact NNLO initial condition pro-

vided in [9]. This requires the calculation of the Mellin transform of the full NNLO initial

condition, which was not available until now in an analitically-continued version defined in

the whole complex plane. The calculations presented here fill this gap. Finally, we include

both the heavy-quark and the gluon and light quark FFs in their coupled evolution.

The work is organised as follows. In Sect. 2 we summarise the formalism and the

relevant equations for the heavy-quark fragmentation function computation starting from

a perturbative initial condition. In particular, we focus on the dependence of the results on

the scheme used to deal with heavy flavours, and we present our calculation of the initial

bottom fragmentation function with soft logarithms resummed at NNLL and matched with

the NNLO expression. In Sect. 3 we present selected numerical results, commenting on

the impact of resummation as well as of the inclusion of the NNLO initial conditions. We

present our conclusions in Sect. 4. Appendix A contains some details about the calculation

of the resummed initial condition, while in Appendix B we illustrate the calculation of the

relevant Mellin transforms.
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2 The heavy quark fragmentation function

In the fragmentation-function formalism, the cross section for the production of a heavy

quark Q is given by

σQ(x,Q2,m2) =
∑
j

∫ 1

x

dz

z
σ̂j

(x
z
, αs(µ

2
R), µ2

R, µ
2
F , Q

2
)
DjQ(z, µ2

F ,m
2) +O ((m/Q)p) ,

(2.1)

where x is the fraction of the available energy carried away by the produced heavy quark,

σ̂j is a hard cross section (possibly including parton distribution functions for the initial

state) and DjQ the fragmentation functions of partons j into the heavy quark Q.

The fragmentation functions at the scale µF are obtained by evolving suitable initial

conditions, given at a reference scale µ0F , through Altarelli-Parisi equations. In the fol-

lowing, we will be interested in the initial condition in the case j = Q = b, which can be

computed perturbatively at µ0F ∼ m. We will denote by Db the b fragmentation function

for simplicity. We will also omit the explicit dependence of the fragmentation function on

the b-quark mass m.

2.1 Fixed-order calculation of the initial condition

The initial condition for the heavy quark fragmentation function can be computed pertur-

batively, as illustrated in [7, 8], at a scale µ0F of the order of (but not necessarily equal

to [19]) the heavy quark mass. The order-αs correction is given in [7], while the order-α2
s

coefficient was computed in [9]. The result is

Dpert
b (z, µ2

0F ) = δ(1− z) +
α

(nf )
s (µ2

0F )

2π
d

(1)
b (z, µ2

0F ) +

(
α

(nf )
s (µ2

0F )

2π

)2

d
(2)
b (z, µ2

0F ) +O(α3
s),

(2.2)

where

d
(1)
b (z, µ2

0F ) = CF

[
1 + z2

1− z

(
log

µ2
0F

m2(1− z)2
− 1

)]
+

(2.3)

d
(2)
b (z, µ2

0F ) = C2
FF

(C2
F )

Q (z, µ2
0F ) + CACFF

(CACF )
Q (z, µ2

0F )

+ CFTRF
(CFTR)
Q (z, µ2

0F ) + CFTRn`F
(CFTRn`)
Q (z, µ2

0F ), (2.4)

and n` = nf −1 is the number of massless flavors. The functions F
(C2
F )

Q , F
(CACF )
Q , F

(CFTR)
Q ,

F
(CFTRn`)
Q are given explicitly in [9]. The calculation in [9] is performed in the MS renor-

malization scheme for ultraviolet divergences, which means that both massless and massive

flavors take part in the evolution of the running coupling.

For the purpose of comparison with the resummed result, it will be useful to rewrite

the result of [9] as an expansion in powers of αs = α
(n`)
s . Furthermore, for greater generality

it will be convenient to choose a renormalization scale µ0 different from µ0F . To order α2
s,
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we have

α
(nf )
s (µ2

0F ) = αs(µ
2
0)− α2

s(µ
2
0)

{
[b0(n`)− b0(nf )] log

m2

µ2
0

+ b0(nf ) log
µ2

0F

µ2
0

}
+O(α3

s)

= αs(µ
2
0)− α2

s(µ
2
0)

{
Tf
3π

log
m2

µ2
0

+
11CA − 4Tfnf

12π
log

µ2
0F

µ2
0

}
+O(α3

s), (2.5)

where we have used

b0(n`) =
11CA − 4Tfn`

12π
; nf = n` + 1. (2.6)

The first term in curly brackets originates from the change of renormalization scheme, while

the second one arises from evolution from µ0 to µ0F . Replacing Eq. (2.5) in Eq. (2.2) and

expanding again in powers of αs(µ
2
0) to order 2 we get

Dpert
b (z, µ2

0F ) = δ(1− z) +
αs(µ

2
0)

2π
d

(1)
b (z, µ2

0F )

+

(
αs(µ

2
0)

2π

)2{
d

(2)
b (z, µ2

0F )− d(1)
b (z, µ2

0F )

[
2Tf
3

log
m2

µ2
0

+
11CA − 4Tf (n` + 1)

6
log

µ2
0F

µ2
0

]}
+O(α3

s). (2.7)

The calculation of the Mellin transform of this expression,

Dpert
b (N,µ2

0F ) =

∫ 1

0
dz zN−1Dpert

b (z, µ2
0F ) (2.8)

as a function of the complex variable N can be performed as illustrated in Appendix B;

this is one of the main results of this paper.

2.2 Soft gluon resummation

It was observed in [8] that logarithmic corrections to the initial condition for the heavy

quark fragmentation function, arising at all orders because of soft emission, may play a

relevant role, at least conceptually, in the large-z region. It is therefore useful to resum such

contributions to all orders, to some given logarithmic accuracy, and to assess their impact

on the fragmentation function itself and on related observables. Soft gluon resummation

of the b fragmentation function at the initial scale was performed in [8] to NLL accuracy,

and subsequently improved to NNLL in [12]. Here we recompute the process-dependent

component of the resummed initial condition, by including a term that was omitted in

previous results, and improve on them by matching the resummed expression to the order-

α2
s result of [9].

Soft gluon resummation is performed in Mellin space, as illustrated in Ref. [8]. For a

generic function g(z), with 0 ≤ z ≤ 1, we define

g(N) =

∫ 1

0
dz zN−1g(z). (2.9)
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The resummed fragmentation function at the initial scale for evolution µ2
0F takes the fa-

miliar form of an exponential,

Dres
b (N,µ2

0F ) = g0

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

)
exp

[
F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)]
, (2.10)

where

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

∫ 1

0
dz

zN−1 − 1

1− z

[∫ µ20F

m2(1−z)2

dµ2

µ2
A(αs(µ

2)) +H(αs(m
2(1− z)2))

]
(2.11)

and

λ = b0αs(µ
2
0) logN. (2.12)

The functions A(αs) and H(αs) have perturbative expansions in powers of αs starting at

order 1:

A(αs) =

∞∑
k=1

Ak

(αs
π

)k
; H(αs) =

∞∑
k=1

Hk

(αs
π

)k
. (2.13)

NNLL accuracy is achieved including A(αs) up to order α3
s and H(αs) up to order α2

s.

A(αs) is determined by the Altarelli-Parisi splitting functions, while H(αs) is process de-

pendent, and must be extracted from the fixed-order calculation. The coefficients Hi must

be obtained by matching the expansion of the resummed expression Eq. (2.10) to the

relevant perturbative order with the fixed-order calculation.

In Eq. (2.10) the strong coupling is computed with n` = 4 active flavour; this is the

natural choice, because the integration over µ2 in the exponent ranges betweenm2(1−z)2 �
m2 and µ2

0F ∼ m2. Its evolution from µ0F up to a hard scale µF � m is however performed

with nf = n` + 1 massless flavours.1

It is interesting to discuss the dependence of the resummed initial condition, Eq. (2.10),

on the initial factorization scale µ0F . The fragmentation function evolved up to a generic

hard scale µF is given by

Dres
b (N,µ2

F ) = E(N,µ2
F , µ

2
0F )Dres

b (N,µ2
0F ), (2.14)

where

E(N,µ2
F , µ

2
0F ) = E−1(N,µ2

0F , µ
2
F ) (2.15)

is the Altarelli-Parisi evolution kernel at large N . We expect Dres
b (N,µ2

F ) to be independent

of the initial scale µ0F , which implies

∂ logDres
b (N,µ2

0F )

∂ logµ2
0F

= − ∂

∂ logµ2
0F

logE(N,µ2
F , µ

2
0F )

=
∂

∂ logµ2
0F

logE(N,µ2
0F , µ

2
F )

= γAP(N,α
(nf )
s (µ2

0F )), (2.16)

1We thank Stefano Catani for helping us clarifying this point.
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where

γAP(N,α
(nf )
s (µ2

0F )) = −A(α
(nf )
s (µ2

0F )) logN +O(N0) (2.17)

is the relevant MS anomalous dimension in the large-N limit. As already observed, the

evolution between an initial scale µ0F , of the order or the heavy quark mass m, and a hard

scale µF � m, is determined by nf massless flavours; the anomalous dimension is therefore

naturally expressed as an expansion in powers of α
(nf )
s , whose coefficients Ak also depend

on nf for k ≥ 2. On the other hand, neglecting O(N0) terms, the logarithmic derivative

of Eq. (2.10) reads

∂ logDres
b (N,µ2

0F )

∂ logµ2
0F

=

∫ 1

0
dz

zN−1 − 1

1− z

[
A(α(n`)

s (µ2
0F )) +

∂H(α
(n`)
s (m2(1− z)2))

∂ logµ2
0F

]
+O(N0)

= −

[
A(α(n`)

s (µ2
0F )) +

∂H(α
(n`)
s (m2(1− z)2))

∂ logµ2
0F

]
logN +O(N0). (2.18)

Equations (2.16) and (2.18) can only be consistent with each other if the coefficients Hk

for k ≥ 2 carry a dependence on log
µ20F
m2 .

After performing the two integrations in Eq. (2.11), the exponent F is expressed as a

power expansion in αs at fixed λ. To NNLL accuracy

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

1

αs(µ2
0)
g1(λ) + g2(λ) + αs(µ

2
0)g3(λ) + N3LL. (2.19)

The functions g0, g1, g2, g3 are given explicitly in Appendix A, together with some details

on their derivation, in terms of the coefficients A1, A2, A3 and H1, H2. The functions g1(λ)

and g2(λ) were already given in [8], and we find full agreement with those expressions. The

function g3(λ) was computed in [12], where NNLL resummation was performed, but not

explicitly provided.

The extraction of H2 from the order-α2
s calculation deserves some comments. It can be

obtained by expanding Eq. (2.10) to order α2
s and comparing the result with the fixed-order

calculation in the large-N limit, Eq. (2.2), after the replacement Eq. (2.5). We obtain

H2 = −CF
[
πb0(n`)

9
+ CA

(
9ζ3

4
− π2

12
− 11

18

)]
+
CFTf

54

[
9 log2 m2

µ2
0F

+ 30 log
m2

µ2
0F

+ 28

]
,

(2.20)

which depends on log
µ20F
m2 as expected.

We can check explicitly that, with H2 given in Eq. (A.15), the resummed initial con-

dition Dres
b (N,µ2

0F ) at NNLL is a solution of Eq. (2.16). Indeed, neglecting constant (i.e.

N independent) terms,

∂ logDres
b (N,µ2

0F )

∂ logµ2
0F

=
∂

∂ logµ2
0F

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
= −

[
αs(µ

2
0F )

π
A1 +

α2
s(µ

2
0F )

π2
A2(n`) +

α2
s(µ

2
0F )

π2

∂H2

∂ logµ2
0F

]
logN +O(α3

s),

(2.21)
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where we have taken into account that H1 is µ0F -independent, and we have displayed the

dependence of A2 on the number of flavours n`, see Eqs. (A.12,A.15). Since

∂H2

∂ logµ2
0F

=
CFTf

9

(
3 log2 µ

2
0F

m2
− 5

)
(2.22)

we obtain

∂ logDres
b (N,µ2

0F )

∂ logµ2
0F

= −
{
A1

π

[
αs(µ

2
0F ) + α2

s(µ
2
0F )

Tf
3π

log2 µ
2
0F

m2

]
+
α2
s(µ

2
0F )

π2

[
A2(n`)−

5

9
CFTf

]}
logN +O(α3

s),

(2.23)

where we have used A1 = CF . By Eq. (2.5) with µ0 = µ0F ,

αs(µ
2
0F ) + α2

s(µ
2
0F )

Tf
3π

log2 µ
2
0F

m2
= α

(nf )
s (µ2

0F ). (2.24)

Furthermore, from Eq. (A.12),

A2(n`)−
5

9
CFTf = A2(nf ). (2.25)

Hence

∂ logDres
b (N,µ2

0F )

∂ logµ2
0F

= −
{
A1

π
α

(nf )
s (µ2

0F ) +
α2
s(µ

2
0F )

π2
A2(nf )

}
logN +O(α3

s)

= γAP(N,α
(nf )
s (µ2

0F )) (2.26)

as announced.

Our result, Eq. (2.20), differs from the value of H2 given in [18] by the last term,

proportional to CFTf and µ0F -dependent. This extra term is different from zero for all

choices of µ0F . We have seen that a dependence of H2 on the initial scale µ0F is expected on

general grounds, and can be read off the Altarelli-Parisi anomalous dimension in the large-

N limit. We have also shown that our result Eq. (2.20) is consistent with expectations.

In [18], H2 was extracted under the assumption that the b quark appears only as an external

line, i.e. no loops involving b quarks was considered; here, we do not make this assumption.

The value of H2 obtained in [18] was later employed in [12].

2.3 Matching resummed and fixed-order initial condition

Both the fixed-order initial condition for the b fragmentation function Eq. (2.8), accurate

to NNLO, and the resummed initial condition Eq. (2.10), accurate to NNLL, are now ex-

pressed as functions of αs(µ
2
0) = α

(n`)
s (µ2

0), and of the complex variable N , Mellin conjugate

to z. Their combination requires the subtraction of the resummed result expanded to order

α2
s to avoid double counting. Our final result is therefore

Db(N,µ
2
0F ) = Dpert

b (N,µ2
0F ) +Dres

b (N,µ2
0F )

−

[
1 + αs(µ

2
0)
∂Dres

b (N,µ2
0F )

∂αs

∣∣∣∣
αs=0

+
1

2
α2
s(µ

2
0)
∂2Dres

b (N,µ2
0F )

∂α2
s

∣∣∣∣
αs=0

]
. (2.27)
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3 Results

In this Section, we present results for the b-quark fragmentation function Db(z, µ
2
F ) and

its Mellin transform Db(N,µ
2
F ). Our aim is to assess the impact of the NNLL soft-gluon

resummation for the initial condition, as well as the size of O(α2
s) terms in the latter. We

will always employ NNLL DGLAP evolution, and we will set the following values for the

bottom mass and the factorisation scale:

m = 4.7 GeV, µF = 100 GeV. (3.1)

For all results presented in this section we will set µ0F = µ0. Specifically, we will consider

two values for the initial scale µ0, namely µ0 = m (displayed in the left panels) and µ0 = 2m

(in the right panels).

The Mellin-transfomed initial condition Db(N,µ
2
0) displays a logarithmic branch cut

on the positive N real axis for λ > 1
2 , or

N > NL(µ0) = e
1

2b0αs(µ
2
0) (3.2)

originated by the Landau singularity of the running coupling. The resummed initial con-

dition is meaningless for N too close to NL(µ0). We find

NL(m) ∼ 35; NL(2m) ∼ 65. (3.3)

For this reason, we choose a different range in N for the two values of µ0.

D(N)

NNLO
NNLO+LL

NNLO+NLL
NNLO+NNLL

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 µ=100 GeV, µ0=4.7 GeV, m=4.7 GeV

NNLL evolution
NNLO

NNLO+LL
NNLO+NLL

NNLO+NNLL

µ=100 GeV, µ0=9.4 GeV, m=4.7 GeV

NNLL evolution

Ratio over  NNLO+NNLL (NNLO init. cond.)

N

NNLO
NNLO+LL

NNLO+NLL
NNLO+NNLL

 0.5

 1

 1.5

 0  10  20

Ratio over  NNLO+NNLL (NNLO init. cond.)

N

NNLO
NNLO+LL

NNLO+NLL
NNLO+NNLL

 0  10  20  30  40  50
 0

 0.5

 1

Figure 1: Predictions for the bottom-quark FF as a function of N in the positive real

axis, including soft resummation up to NNLL and initial conditions at NNLO.
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D(N)

NLO
NLO+LL

NLO+NLL
NLO+NNLL

NNLO+NNLL

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 µ=100 GeV, µ0=4.7 GeV, m=4.7 GeV

NNLL evolution
NLO

NLO+LL
NLO+NLL

NLO+NNLL
NNLO+NNLL

µ=100 GeV, µ0=9.4 GeV, m=4.7 GeV

NNLL evolution

N

NNLO+NNLL
NLO

NLO+LL

NLO+NLL
NLO+NNLL

 1
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 3

 4

 5

 0  10  20

Ratio over  NNLO+NNLL (NLO init. cond.)

N

NNLO+NNLL
NLO

NLO+LL

NLO+NLL
NLO+NNLL

 0  10  20  30  40  50

 0.5
 1
 1.5
 2
 2.5
 3
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Figure 2: Predictions for the bottom-quark FF as a function of N in the positive real

axis, including soft resummation up to NNLL and initial conditions at NLO. The prediction

indluding NNLL resummation and NNLO initial conditions is also shown as reference.

In Fig. 1 we show results for Db(N,µ
2
F ). We include soft resummation at different

logarithmic accuracies on top of the NNLO initial conditions: the dashed black curve

shows the predictions without resummation, i.e. the same result presented in Ref. [17],

which is seen to become negative at N ∼ 20. LL, NLL and NNLL resummation are

included in the dashed teal, dot-dashed magenta and solid orange curves, respectively. It

can be appreciated that the NNLL resummed prediction is the only one which remains

positive over the whole considered N range, while all other predictions become negative for

sufficiently large values of N . Also, at large N (N > 10), effects of resummation remain

quite important at all considered orders. Finally, when the initial scale µ0 is increased by a

factor 2, differences among the predictions turn larger, a fact related to the smaller impact

of the DLGAP evolution, which is common to all predictions, in favour of that of the initial

conditions.

The impact of the NNLO initial condition can be better appreciated in Fig. 2, where we

show the same predictions as in Fig. 1, but obtained including only NLO initial conditions.

The different predictions are displayed as symbols, with the same color code as in Fig. 1

for the corresponding logarithmic accuracy, and compared to the NNLO+NNLL one. We

observe that i) resummation effects play an even more important role in this case; otherwise

stated, the inclusion of NNLO initial condition has a stabilising effect in this respect; ii) with

NLO initial conditions, NLL resummation is sufficient to get positive-definite predictions

up to N ≈ 50; iii) if NNLL resummation is included, the effect of finite terms in the NNLO

initial conditions is small for N < 20, while it amounts to several 10%s for larger values of
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Figure 3: Predictions for the bottom-quark FF in z space, including soft resummation up

to NNLL and initial conditions at NNLO or NLO.

Turning to predictions in the physical space of momentum fraction z, Fig. 3 provides a

global view of the effects, where the same patterns as in Figs. 1 and 2 are employed for the

corresponding predictions. The most visible effect of resummation is to reduce the value of

the FF at the large-z peak, slightly moving its position zP to the left, and slightly raising

the tail for z < zP . Unlike in N space, predictions generally reflect the hierarchy of the

resummation orders, both when NNLO and NLO initial conditions are employed (central

and lower inset respectively). The hierarchy is violated only for very large values of z

(well right of zP ), where the differences at large N are reflected. Considering the effects of

including NNLO initial conditions, by comparing the central and lower inset we see that

their inclusion reduces the impact of resummation, as already observed in N space. We

also notice that, when NNLL resummation is employed, genuine O(α2
s) effects are generally

at the percent level (although not uniformly in the z range), about 5% for µ0 = m and

z < zP , and twice as much when µ0 is increased to 2m.
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4 Conclusions

In this work, we have obtained results for the b-quark fragmentation function including

NNLL soft-gluon resummation for the perturbative initial conditions matched with the

NNLO result.

Following the approach of [8], we have performed the resummation of soft emission

logarithms for the Mellin-transformed initial condition. First, we have identified a term

in the process-dependent component of the NNLL resummed initial condition that was

omitted in previous works. Note that the inclusion of this term makes the resummed

result fully consistent with the exact NNLO perturbative calculation and with the DGLAP

evolution. Moreover we have computed the Mellin transform of the full NNLO initial

condition, and obtained its analytic continuation to the complex plane of the variable N ,

Mellin-conjugate to the momentum fraction z, which was not available in the existing

literature. Finally we have considered the coupled evolution of the quark and gluon FFs.

We find that NNLL resummation improves the predictions obtained by evolving initial

conditions at NNLO. Their behaviour is regular across the relevant range of the Mellin

variable N , similarly to what happens in the NLO+NLL case. The inclusion of NNLO

initial conditions provides a sizeable stabilisation of resummed predictions in z space, and

has a moderate, yet appreciable effect on the evolved fragmentation function. Our work

makes it possible to include the NNLO+NNLL initial conditions, convolved with a suit-

able short-distance cross section, in a wide range of phenomenological applications related

to heavy-hadron production at colliders and in particular at the LHC. The perturbative

fragmentation functions are available via LHAPDF grids and can be requested to the au-

thors. An easy-to-use computer code implementing the NNLO+NNLL initial conditions

supplemented by NNLO DGLAP evolution is in preparation.
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A Calculation of the resummed initial condition for Db

In this Appendix we describe in detail the calculation of the resummed b fragmentation

function at the initial scale µ0F , Eq. (2.10):

Dres
b (N,µ2

0F ) = g0

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

)
exp

[
F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)]
, (A.1)

where

λ = b0αs(µ
2
0) logN, (A.2)

to NNLL accuracy. In this expression, αs = α
(n`)
s is defined in the n` = nf − 1 renormal-

ization scheme:

µ2dαs(µ
2)

dµ2
= β(αs) = −b0α2

s − b1α3
s − b2α4

s +O(α5
s), (A.3)

where

b0 = b0(n`) =
11CA − 4Tfn`

12π
, (A.4)

b1 = b1(n`) =
17C2

A − 10CATfn` − 6CFTfn`
24π2

, (A.5)

b2 = b2(n`) =
1

128π3

(
2857− 5033

9
n` +

325

27
n2
`

)
. (A.6)

The renormalization scale µ0 is taken to be different in general from the initial factorization

scale µ0F . Both are taken of the order of the heavy quark mass m.

We first consider the exponent F . We have

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

∫ 1

0
dz

zN−1 − 1

1− z
f

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λz

)
(A.7)

f

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λz

)
=

∫ µ20F

m2(1−z)2

dµ2

µ2
A(αs(µ

2)) +H(αs(m
2(1− z)2)), (A.8)

where

λz = −b0αs(µ2
0) log(1− z). (A.9)

To NNLL accuracy,

A(αs) = A1
αNNLL
s

π
+A2

(
αNLL
s

π

)2

+A3

(
αLL
s

π

)3

, (A.10)

where

A1 = CF (A.11)

A2 = CF

[
5

3
πb0 + CA

(
1

3
− π2

12

)]
(A.12)

A3 = CF

{
− π2b20

3
+ πb0

[(
55

16
− 3ζ3

)
CF +

(
253

72
− 5π2

18
+

7ζ3

2

)
CA

]

+

[(
−605

192
+

11ζ3

4

)
CACF +

(
− 7

18
− π2

18
− 11ζ3

4
+

11π4

720

)
C2
A

]}
, (A.13)
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and

H(αs) = H1
αNLL
s

π
+H2

(
αLL
s

π

)2

, (A.14)

where

H1 = −CF (A.15)

H2 = −CF
[
πb0
9

+ CA

(
9ζ3

4
− π2

12
− 11

18

)]
+
CFTf

54

[
9 log2 m2

µ2
0F

+ 30 log
m2

µ2
0F

+ 28

]
.

(A.16)

The µ2 integration of the A term is conveniently performed in the variable α = αs(µ
2):

dµ2

µ2
=

dα

β(α)
. (A.17)

To NNLL accuracy,

f

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λz

)
=
A1

π

∫ αNNLL
+

αNNLL
−

dα

b0α+ b1α2 + b2α3
+
A2

π2

∫ αNLL
+

αNLL
−

dα

b0 + b1α
+
A3

π3

∫ αLL
+

αLL
−

α2dα

b0

+
H1

π
αNLL
s (m2(1− z)2) +

H2

π2

(
αLL
s (m2(1− z)2)

)2
(A.18)

where

αNkLL
− = αs(µ

2
0F ); αNkLL

+ = αs(m
2(1− z)2), (A.19)

and

αLL
s (µ2) =

αs(µ
2
0)

X(µ2)

αNLL
s (µ2) = αLL

s (µ2)− b1
b0

[
αs(µ

2
0)

X(µ2)

]2

logX(µ2)

αNNLL
s (µ2) = αNLL

s (µ2) +

[
αs(µ

2
0)

X(µ2)

]3
{(

b1
b0

)2 [
log2X(µ2)− logX(µ2)− 1 +X(µ2)

]
+
b2
b0

(1−X(µ2));

}
(A.20)

X(µ2) = 1 + b0αs(µ
2
0) log

µ2

µ2
0

. (A.21)

The integrals in eq. (A.18) are easily computed, and the result is an analytic function of

λz:

f

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λz

)
=

∞∑
p=0

fpλ
p
z =

∞∑
p=0

fp(−b0αs(µ2
0))p logp(1− z). (A.22)

Hence

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

∞∑
p=0

fp(−b0αs(µ2
0))pIp, (A.23)
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where

Ip =

∫ 1

0
dz

zN−1 − 1

1− z
logp(1− z). (A.24)

The functions Ip can be computed by taking derivatives of a generating function:

Ip = lim
η→0

dp

dηp
G(η), (A.25)

where

G(η) =

∫ 1

0
dz (zN−1 − 1) (1− z)η−1 =

Γ(N)Γ(η)

Γ(N + η)
− 1

η
=

1

η

[
Γ(1 + η)N−η − 1

]
+O(1/N).

(A.26)

In the last step we have used the Stirling approximation for the Γ function at large values

of its argument, which is the limit we are interested in. We obtain

Ip =
1

p+ 1

p+1∑
k=0

(
p+ 1

k

)
Γ(k)(1)Lp+1−k +O(1/N), (A.27)

where

L = log
1

N
. (A.28)

We now observe that

1

p+ 1
k!

(
p+ 1

k

)
Lp+1−k = − dk

dLk

∫ 1− 1
N

0
dz

logp(1− z)
1− z

. (A.29)

Replacing eq. (A.29) in (A.27) we obtain

Ip = −
∞∑
k=0

Γ(k)(1)

k!

dk

dLk

∫ 1− 1
N

0
dz

logp(1− z)
1− z

+O(1/N). (A.30)

Note that the sum has been extended to∞ because all derivatives of order p+2 and higher

vanish. We have therefore

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

∞∑
p=0

fp(−b0αs(µ2
0))pIp

= −
∞∑
p=0

fp(−b0αs(µ0)2)p
∞∑
k=0

Γ(k)(1)

k!

dk

dLk

∫ 1− 1
N

0
dz

logp(1− z)
1− z

= −
∞∑
k=0

Γ(k)(1)

k!

dk

dLk

∫ 1− 1
N

0
dz

f(λz)

1− z
. (A.31)

The z integration is conveniently performed in the variable λz:

dλz = b0αs(µ
2
0)

dz

1− z
; 0 < λz < λ. (A.32)

Furthermore
dk

dLk
= (−b0αs(µ2

0))k
dk

dλk
. (A.33)
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We find

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
= − 1

b0αs(µ2
0)

∞∑
k=0

Γ(k)(1)

k!
(−b0αs(µ2

0))k
dk

dλk

∫ λ

0
dλz f(λz). (A.34)

An even simpler expression is obtained by separating off the first term in the sum, which

is the only one which requires an integration:

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
= − 1

b0αs(µ2
0)

∫ λ

0
dλz f(λz) +

∞∑
k=1

Γ(k)(1)

k!
(−b0αs(µ2

0))k−1 d
k

dλk

∫ λ

0
dλz f(λz)

= − 1

b0αs(µ2
0)

∫ λ

0
dλz f(λz) +

∞∑
k=0

Γ(k+1)(1)

(k + 1)!
(−b0αs(µ2

0))k
dk

dλk
f(λ).

(A.35)

To NNLL accuracy, only the terms k = 0, 1 are relevant in the sum. We therefore obtain

our final expression

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
= − 1

b0αs(µ2
0)

∫ λ

0
dλz f(λz)+Γ(1)(1)f(λ)−Γ(2)(1)

2
b0αs(µ

2
0)
d

dλ
f(λ)+N3LL

(A.36)

which can be cast in the form of an expansion in powers of αs(µ
2
0) at fixed λ:

F

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

, λ

)
=

1

αs(µ2
0)
g1(λ) + g2(λ) + αs(µ

2
0)g3(λ) + N3LL (A.37)

(we have omitted the dependence of g2, g3 on m2

µ20
,
µ20F
µ20

for simplicity.)

Constant terms, i.e. N -independent terms, are not controlled by Sudakov resumma-

tion. Note that, because the expansion of F starts at order αs, we have

g1(λ) = g
(2)
1 λ2 + g

(3)
1 λ3 +O(λ4) (A.38)

g2(λ) = g
(1)
2 λ+ g

(2)
1 λ2 +O(λ3) (A.39)

g3(λ) = g
(0)
3 + g

(1)
1 λ+O(λ2). (A.40)

So, N -independent terms in F first appear at NNLL. We remove them by replacing

g3(λ)→ g3(λ)− g(0)
3 . (A.41)

We find

g1(λ) = − A1

2πb20
[2λ+ (1− 2λ) log(1− 2λ)] (A.42)

g2(λ) =
1

4π2b30

{
4λ

[
A2b0 −A1

(
b1 + b20 log

µ2
0F

µ2
0

)
π

]
+ 2

[
A2b0 + b20H1π −A1

(
b1 + b20

(
log

m2

µ2
0

− 2γ

))
π

]
log(1− 2λ)

−A1b1π log2(1− 2λ)

}
, (A.43)
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in agreement with the results presented in ref. [8]. We also find

g3(λ) = − 1

12π3b40(1− 2λ)

{
2λ
[
6A3b

2
0λ

+ π
[
6b30H2 + 6A2

[
−b0b1(1 + λ) + b30

(
2γ − log

m2

µ2
0

+ (1− 2λ) log
µ2

0F

µ2
0

)]
+ 6A1b0b2(1− λ)π + 6A1b

2
1λπ − 6b20b1

[
A1

(
2γ − log

m2

µ2
0

)
+H1

]
π

+ b40π

[
6H1

(
2γ − log

m2

µ2
0

)
+A1

(
3

(
2γ − log

m2

µ2
0

)2

− 3(1− 2λ) log2 µ
2
0F

µ2
0

+ 2π2

)]]]
− 6π

[
A2b0b1 + b20b1H1π −A1

(
2b21λ+ b0b2(1− 2λ)− b20b1

(
2γ − log

m2

µ2
0

))
π

]
log(1− 2λ)

+ 3A1b
2
1π

2 log2(1− 2λ)

}
. (A.44)

This is a new result: NNLL resummation was performed in [12], but an explicit expression

of g3(λ) is not given there.

We now turn to the pre-exponential factor g0 in eq. (2.10). The function g0 is defined

in such a way that constant terms are correctly taken into account up to order in α2
s. It

can therefore be read off the result of Ref. [9]:

g0

(
αs(µ

2
0),

m2

µ2
0

,
µ2

0F

µ2
0

)
= 1 +

α
(nf )
s (µ2

0F )

2π
d

(1,c)
b +

(
α

(nf )
s (µ2

0F )

2π

)2

d
(2,c)
b , (A.45)

where

α
(nf )
s (µ2

0F ) = αs(µ
2
0)−α2

s(µ
2
0)

{
[b0(n`)− b0(nf )] log

m2

µ2
0

+ b0(nf ) log
µ2

0F

µ2
0

}
+O(α3

s) (A.46)

and

d
(1,c)
b = −CF

[
2γ2 +

3

2
log

m2

µ2
0F

− 2γ

(
1 + log

m2

µ2
0F

)
− 2

(
1− π2

6

)]
(A.47)
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d
(2,c)
b = CACF

[(
11

8
− 11γ

6

)
log2 m2

µ2
0F

−
(
−3ζ(3) +

35

8
− 34γ

9
− 11γ2

3
+
γπ2

3

)
log

m2

µ2
0F

+ 9γζ(3)− 97ζ(3)

18
+
π4

12
+
γ2π2

3
− 14γπ2

9
+

7π2

54
− 22γ3

9
− 34γ2

9
− 55γ

27
+

1141

288
+ π2 log 2

]

+ C2
F

[
1

8
(4γ − 3)2 log2 m2

µ2
0F

−
(

6ζ(3) +
27

8
− γ − 7γ2 + 4γ3 − π2 +

2γπ2

3

)
log

m2

µ2
0F

− 3ζ(3)

2
− 11π4

180
+

2γ2π2

3
− 2γπ2

3
+
π2

4
+ 2γ4 − 4γ3 − 2γ2 + 4γ +

241

32
− 2π2 log 2

]

+ CFTR

[(
2γ

3
− 1

2

)
log2 m2

µ2
0F

−
(
−3

2
+

8γ

9
+

4γ2

3

)
log

m2

µ2
0F

+
2ζ(3)

3
− π2

3
− 56γ

27
+

3139

648

]

+ CFTRn`

[(
2γ

3
− 1

2

)
log2 m2

µ2
0F

−
(
−3

2
+

8γ

9
+

4γ2

3

)
log

m2

µ2
0F

− 2ζ(3)

9
+ γ

(
4π2

9
− 4

27

)
− 4π2

27
+

8γ3

9
+

8γ2

9
− 173

72

]
. (A.48)

B Analitically-continued Mellin transforms for the O (α2
s) initial condi-

tions

In this Appendix, we report on the computation of the analitically-continued Mellin trans-

forms of the O(α2
s) (NNLO) initial conditions, for all fragmenting partons. These are

necessary for the inversion of the expressions obtained in Mellin space back to z space. In

our case, such an inversion is performed using the Talbot-path method [20]. We remind

the reader that the NNLO initial conditions are taken from [9, 10], where they are reported

in z space. Analitically-continued Mellin transforms for most terms can be computed e.g.

by employing the expressions tabulated in [21–25]. However, other terms exist for which

the analitically-continued Mellin transform cannot be found in literature. For these terms

we will provide details in Sects. B.1-B.6. Finally, in Sect.B.7, we discuss the validation of

our results.

B.1 Terms including a factor log(1+z)k

1+z

For those terms which contain the factor log(1 + z)k/(1 + z) we apply the expansion shown

in Eqs. (52), (56) of [23], either with an in-house implementation or by using the ancont

code [22, 23].
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For example, we have obtained

M
[

log(1 + z) log(z)

1 + z

]
(N) = −

∑
k

a
(2)
k

k

2(N − 1 + k)2
, (B.1)

M
[

log2(1 + z) log(z)

1 + z

]
(N) = −

∑
k

a
(3)
k

k

3(N − 1 + k)2
, (B.2)

M
[

log(1 + z) log2(z)

1 + z

]
(N) =

∑
k

a
(2)
k

k

(N − 1 + k)3
, (B.3)

M
[

Li2(−z) log(z)

1 + z

]
(N) = −

∑
k

a
(2)
k M [log(z)] (N − 1 + k) +∑

k

a
(1)
k {M [Li2(−z)] (N − 1 + k)+

(N − 1)M [Li2(−z) log(z)] (N − 1 + k)} , (B.4)

where the a
(p)
k coefficients are tabulated in Ref. [23].

We point out that Eq. (62) of [23] has some typographical errors. In the convention of

that paper (note the exponent N in the Mellin transform), it should read:∫ 1

0
dz zN

log(z)Li2(z)

1 + z
= −

9∑
k=1

a
(1)
k k

(N + k)2

[
ζ(2) + ψ′(N + k + 1)− 2

S1(N + k)

N + k

]
, (B.5)

where S1(N) is the first-order harmonic sum [26].

B.2 Terms including a factor 1
(1+z)p

Since in the results of Refs. [9, 10] one finds terms containing f(x)/(1+x)3 and f(x)/(1+x)4,

we generalise Eqs. (52), (56) of Ref. [23] to these cases, and quote the relevant coefficients.

Specifically, assuming p > 1:

M
[

f(z)

(1 + z)p+1

]
(N) =

∫ 1

0
dz zN−1 f(z)

(1 + z)p+1

= −f(1)

p 2p
+

1

p

∫ 1

0
dz zN−2 (N − 1)f(z) + zf ′(z)

(1 + z)p

= −f(1)

p 2p
+

1

p

∑
k

b
(p)
k {(N − 1)M [f(z)] (N − 2 + k)+

M
[
f ′(z)

]
(N − 1 + k)

}
, (B.6)

where we have expanded
1

(1 + z)p
=
∑
k

zkb
(p)
k . (B.7)

Relevant cases appearing in the O(α2
s) initial conditions are e.g.:

M
[

Li2(z)

(1 + z)3

]
, M

[
log(z) log(1− z)

(1 + z)3

]
. (B.8)

In Tab. 1 we quote the coefficients b
(p)
k for p = 1, 2, 3, 4.
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B.3 Terms with the Nielsen functions S1,2(−z) and S1,2(z2)

The function S1,2(z) is defined as

S1,2(z) =
1

2

∫ z

0

log2(1− t)
t

dt , (B.9)

from which it trivially follows that

S′1,2(z) =
dS1,2(z)

dz
=

1

2

log2(1− z)
z

. (B.10)

Given the relation between the Mellin transform of a function and of its derivative,

M [f(z)] (N) =
f(1)−M [f ′(z)] (N + 1)

N
, (B.11)

and the values

S1,2(1) = ζ(3), S1,2(−1) =
ζ(3)

8
, (B.12)

we then have

M [S1,2(z)] =
ζ(3)− 1

2M
[
log2(1− z)

]
(N)

N
, (B.13)

M [S1,2(−z)] =
ζ(3)

8 −
1
2M

[
log2(1 + z)

]
(N)

N
. (B.14)

By using

M
[
log2(1− z)

]
(N) =

S2
1(N) + S2(N)

N
, (B.15)

the first equation reads

M [S1,2(z)] =
ζ(3)

N
− 1

2

S2
1(N) + S2(N)

N2
, (B.16)

which agrees with Ref. [22]. For S1,2(−z), we have instead performed the Mellin transform

of log2(1 + z) using the expansion shown in Ref. [23].

Finally, concerning the Mellin transform of S1,2(z2), we have exploited the relation

M
[
f(x2)

]
(N) =

1

2
M [f(x)]

(
N

2

)
. (B.17)

to rewrite M
[
S1,2(z2)

]
in terms of M [S1,2(z)].

B.4 Terms involving functions of |2z − 1|

The functions

A1(z) = |2z − 1|, (B.18)

A2(z) = ArcTanh (|2z − 1|) (B.19)
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appear in the initial conditions of Refs. [9, 10], specifically in d
(2)
g . The Mellin transform

of A1 can be easily computed:

M [A1(z)] (N) =
(N − 1)

N(N + 1)
+ 2

2−N

N(N + 1)
. (B.20)

Despite its rather simple form, a problem arises when the inverse Mellin transform is

considered,∫ c+i∞

c−i∞
dNM [A1(z)] (N) z−N =

∫ c+i∞

c−i∞
dN

(N − 1)

N(N + 1)
z−N + 2

∫ c+i∞

c−i∞
dN

(2z)−N

N(N + 1)
.

(B.21)

From Eq. (B.21), in particular the second term on the r.h.s., one immediately sees that

the integration contour cannot be closed on the left part of the complex plane if z > 1/2,

rather it must be closed on the right, only for this specific term. This poses a practical

problem when the inversion is performed numerically, as in our case. However, since the

constant c must be larger than the real part of the left-most pole of the integrand (in this

case c > 0), when the integration contour is closed on the right it does not encircle any

pole, hence its contribution is zero. Therefore, a practical solution is to keep the second

term on the r.h.s. of Eq. (B.21) only when z < 1/2.

Moving on to A2, its Mellin transform can be obtained semi-analytically. First, while

both A1 and A2 have a discontinuous derivative at z = 1/2, their difference,

Adiff(z) = A2(z)−A1(z) , (B.22)

is smooth for z ∈ (0, 1), while at the endpoints it has logarithmic singularities. Subtracting

the singularities (and imposing that the remainder vanishes for z = 1/2), one gets the

function

Areg(z) = Adiff(z) +
1

2
(log(z) + log(1− z)) + log(2) , (B.23)

which is now smooth z ∈ [0, 1], is symmetric around z = 1/2, and it is normalised such

that Areg(1/2) = 0. Areg(z) can now be fitted with the functional form

Areg(z) =

kmax∑
k=0

ck (z(1− z))k , (B.24)

The values of the coefficient ck, obtained with kmax = 7, are reported in Tab. 2. In this

way the Mellin transform of each term entering the sum can be expressed in terms of the

Euler Beta function: ∫ 1

0
dzzN−1+p(1− z)p = B(N + p, p+ 1) . (B.25)

To summarise, we rewrite the function A2(z) in the form

A2(z) = A1(z)− 1

2
(log(z) + log(1− z))− log(2) +

kmax∑
k=0

ck (z(1− z))k , (B.26)

where the Mellin transform for all terms on the r.h.s. can now be easily computed.
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k ck dk ek
0 −3.0691110144628014 10−1 0 −7.089736955408198 10−1

1 1.0203235756821032 3.6939138307415825 10−2 2.404090533048734

2 −8.198982139352419 10−1 6.1086779903441055 7.919971327024875

3 3.411456568255282 101 −3.17971561004379 101 −8.829898774056112 101

4 −4.100490025841941 102 1.6434190618411395 102 6.476757783580479 102

5 2.6287640325082357 103 −6.293777861195324 102 −2.849867107259887 103

6 −8.382883186201163 103 1.6880992305561952 103 6.756475895565204 103

7 1.0667992579287005 104 −3.142029544696374 103 −6.616331933715405 103

8 0 4.016414152661526 103 0

9 0 −3.4409243129611673 103 0

10 0 1.8763407749751084 103 0

11 0 −5.83979122751871 102 0

12 0 7.805619459373399 101 0

Table 2: Coefficients ck, dk, and ek, defined in Eqs. B.24, B.34 and B.41, respectively.

B.5 Terms involving Li2
(

2z−1
z

)
We will consider the Mellin transforms of the following expressions:

F1(z) = Li2

(
2z − 1

z

)
, (B.27)

F2(z) = Li2

(
2z − 1

z

)
log z , (B.28)

F3(z) = Li2

(
2z − 1

z

)
log(1− z). (B.29)

We will focus on the case for F1. This function is divergent at z → 0, therefore we proceed

like in sec. B.4, exposing the singular behaviour in this region. However, at variance with

what we did there, the remainder is bounded but its derivative is still divergent both at

z → 0 and z → 1. These terms have also to be subtracted, in order to have a regular

function F1reg to fit. We call F1
0
sing the singular part of F1 at z → 0, and F1

0
d−sing, F1

1
d−sing

the contributions which make the derivative of F1 − F1
0
sing divergent in z → 0 and z → 1

respectively 2 . Thus we have

F1(z) = F1
0
sing(z) + F1

0
d−sing(z) + F1

1
d−sing(z) + F1reg(z) , (B.30)

where

F1
0
sing(z) = −π

2

6
− 1

2
log2 z , (B.31)

F1
0
d−sing(z) = z − 2z log z , (B.32)

F1
1
d−sing(z) = z + (1− z) log(1− z) . (B.33)

2Constants and regular terms may also be included in F1sing, F1d−sing.
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The remainder F1reg, which we have chosen such that F1reg(0) = 0, can now be fit with a

polinomial in z

F1reg(z) =

kmax∑
k=1

dkz
k , (B.34)

where we have used kmax = 12. The coefficients dk are shown in tab. 2.

For what concerns the functions F2 and F3, the terms in Eqs. B.31-B.33 are simple

enough so that the Mellin transform of their product with either log z or log(1− z) can be

computed with standard methods. The Mellin transform of the corresponding regular part

is also trivial, since it amounts just to the Mellin transform of log z or log(1− z) multiplied

by a power of z.

B.6 Mellin transform of Li3
(

2z−1
z

)
+ Li3

(
2z−1
1−z

)
The combination

G(z) = Li3

(
2z − 1

z

)
+ Li3

(
2z − 1

1− z

)
(B.35)

appears in the gluon initial condition. Exploiting its symmetry around z = 1/2, we can

proceed in a similar way as in Sects. B.4 and B.5. The function G is smooth for z ∈ (0, 1),

thus we proceed by extracting the singular parts of the function, and of the derivative of

the remainder, when z → 0 and z → 1:

G(z) = G0
sing(z) +G1

sing(z) +G0
d−sing(z) +G1

d−sing(z) +Greg(z) , (B.36)

The singular parts, written so that the remainder satisfies s Greg(1/2) = 0, read

G0
sing(z) =

log(z)

6

[
π2 + log2(z)

]
+ L2

(
π2

6
− L2 +

L2
2

6

)
, (B.37)

G0
d−sing(z) = z log2(z) , (B.38)

G1
sing(z) = G0

sing(1− z) , (B.39)

G1
d−sing(z) = G0

d−sing(1− z) , (B.40)

where L2 = log(2). Following what we did in Sect. B.4 (see Eq. (B.24)), we fit the regular

part Greg(z) with the functional form

Areg(z) =

kmax∑
k=0

ek (z(1− z))k , (B.41)

where kmax = 7 and the coefficients ek are given in Tab. 2.

B.7 Validation

We conclude this Appendix by presenting some validation plots for the analytically-continued

Mellin transforms of the O(α2
s) initial conditions. For all the cases presented in this Ap-

pendix, the fitting parameters have been chosen so that the fitted function differs from the

exact one by no more than few parts in 105. Our validation is both in N and in z space,
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d2(N), numeric vs analytic Mellin, mb=4.7GeV, µ0=10GeV
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Figure 4: Validation plots in N (left) and z space for the Mellin transforms of the O(α2
s)

initial conditions. See the text for details.

setting µ0 6= m (specifically, m = 4.7 GeV, µ0 = 10 GeV) in order to expose all terms of

the initial conditions. Starting from N space, we compare in the left plot of Fig. 4 results

obtained by computing numerically the Mellin transform of the expressions in Refs. [9, 10],

by employing a Gaussian integrator, with the analytic Mellin transforms obtained as de-

scribed above. In the upper panel of that figure, we show as lines (symbols) the absolute

value of the numeric (analytic) Mellin transforms of the initial conditions. In the lower

panel, we plot the quantity

∆dana−num
X =

∣∣∣∣dana
X − dnum

X

dana
X + dnum

X

∣∣∣∣ , (B.42)

where X = b, b, g, q, i.e. the relative difference between the numeric and analytic Mellin

transforms. From this panel we appreciate that the difference between the numeric and

analytic Mellin transforms never exceeds 10−4, with the exception of Db at very large N .

The validation in z space, shown in the right plot of Fig. 4, presents a very similar

layout, with the only relevant change being that the numeric (analytic) Mellin transforms

of the initial conditions are replaced with their exact expression (inverse Mellin transform)

in x space. Again, the relative difference does not exceed 10−4, except for those points

where the initial conditions, hence the denominator in Eq. (B.42), vanish, or in the region

z → 1. Here it has to be stressed that we do not plot the contribution coming from Dirac

delta’s at z = 1 or the endpoint of plus distributions, which live exactly at z = 1, which we
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deem responsible for such a discrepancy. Indeed, we have observed similar discrepancies

also in the case of very simple distributions, e.g.
[

log(1−z)
1−z

]
+

.

References

[1] M. Botje, QCDNUM: Fast QCD Evolution and Convolution, Comput. Phys. Commun. 182

(2011) 490–532, [arXiv:1005.1481].

[2] M. Hirai and S. Kumano, Numerical solution of Q2 evolution equations for fragmentation

functions, Comput. Phys. Commun. 183 (2012) 1002–1013, [arXiv:1106.1553].

[3] V. Bertone, S. Carrazza, and J. Rojo, APFEL: A PDF Evolution Library with QED

corrections, Comput. Phys. Commun. 185 (2014) 1647–1668, [arXiv:1310.1394].

[4] V. Bertone, S. Carrazza, and E. R. Nocera, Reference results for time-like evolution up to

O
(
α3
s

)
, JHEP 03 (2015) 046, [arXiv:1501.00494].

[5] A. Candido, F. Hekhorn, and G. Magni, EKO: Evolution Kernel Operators,

arXiv:2202.02338.

[6] B. Mele and P. Nason, Next-to-leading QCD calculation of the heavy quark fragmentation

function, Phys. Lett. B245 (1990) 635–639.

[7] B. Mele and P. Nason, The Fragmentation function for heavy quarks in QCD, Nucl. Phys.

B361 (1991) 626–644.

[8] M. Cacciari and S. Catani, Soft gluon resummation for the fragmentation of light and heavy

quarks at large x, Nucl. Phys. B617 (2001) 253–290, [hep-ph/0107138].

[9] K. Melnikov and A. Mitov, Perturbative heavy quark fragmentation function through O(α2
s),

Phys. Rev. D70 (2004) 034027, [hep-ph/0404143].

[10] A. Mitov, Perturbative heavy quark fragmentation function through O(α2
s): Gluon initiated

contribution, Phys. Rev. D71 (2005) 054021, [hep-ph/0410205].

[11] M. Cacciari, P. Nason, and C. Oleari, A Study of heavy flavored meson fragmentation

functions in e+ e- annihilation, JHEP 04 (2006) 006, [hep-ph/0510032].

[12] U. Aglietti, G. Corcella, and G. Ferrera, Modelling non-perturbative corrections to

bottom-quark fragmentation, Nucl. Phys. B 775 (2007) 162–201, [hep-ph/0610035].

[13] G. Corcella and A. D. Mitov, Bottom quark fragmentation in top quark decay, Nucl. Phys. B

623 (2002) 247–270, [hep-ph/0110319].

[14] M. Cacciari, G. Corcella, and A. D. Mitov, Soft gluon resummation for bottom fragmentation

in top quark decay, JHEP 12 (2002) 015, [hep-ph/0209204].

[15] M. L. Czakon, T. Generet, A. Mitov, and R. Poncelet, B-hadron production in NNLO QCD:

application to LHC tt events with leptonic decays, JHEP 10 (2021) 216, [arXiv:2102.08267].

[16] G. Corcella, Fragmentation in H —> b anti-b processes, Nucl. Phys. B 705 (2005) 363–383,

[hep-ph/0409161]. [Erratum: Nucl.Phys.B 713, 609–610 (2005)].

[17] G. Ridolfi, M. Ubiali, and M. Zaro, A fragmentation-based study of heavy quark production,

JHEP 01 (2020) 196, [arXiv:1911.01975].

[18] E. Gardi, On the quark distribution in an on-shell heavy quark and its all-order relations

with the perturbative fragmentation function, JHEP 02 (2005) 053, [hep-ph/0501257].

– 25 –

http://xxx.lanl.gov/abs/1005.1481
http://xxx.lanl.gov/abs/1106.1553
http://xxx.lanl.gov/abs/1310.1394
http://xxx.lanl.gov/abs/1501.00494
http://xxx.lanl.gov/abs/2202.02338
http://xxx.lanl.gov/abs/hep-ph/0107138
http://xxx.lanl.gov/abs/hep-ph/0404143
http://xxx.lanl.gov/abs/hep-ph/0410205
http://xxx.lanl.gov/abs/hep-ph/0510032
http://xxx.lanl.gov/abs/hep-ph/0610035
http://xxx.lanl.gov/abs/hep-ph/0110319
http://xxx.lanl.gov/abs/hep-ph/0209204
http://xxx.lanl.gov/abs/2102.08267
http://xxx.lanl.gov/abs/hep-ph/0409161
http://xxx.lanl.gov/abs/1911.01975
http://xxx.lanl.gov/abs/hep-ph/0501257


[19] V. Bertone, A. Glazov, A. Mitov, A. Papanastasiou, and M. Ubiali, Heavy-flavor parton

distributions without heavy-flavor matching prescriptions, JHEP 04 (2018) 046,

[arXiv:1711.03355].
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