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Abstract

As the LHC moves into its high-luminosity phase, the CMS experiment must handle more complex
data collected at much higher rates. While the Geant4-based simulation application (FullSim) provides
highly accurate simulation to complement real data, FullSim’s intensive consumption of computing
resources becomes an increasing liability as the rates increase, while faster tools offer an advantage.
The fast MC production application (FastSim) delivers a complete simulation with a factor of 10
speedup over FullSim, but introduces inaccuracies in some observables. A specialized refinement
method, Fast Perfekt, employs machine learning to improve the accuracy of FastSim. An initial report
of this work focused on the refinement of jet flavor tagging observables. This article presents an update
on the refinement, focusing on PUPPI jets with Run 3 data-taking conditions. Refinement is extended
to include jet transverse momentum as well as its propagation to missing transverse momentum. A
grid-based framework and real-time monitoring system have been developed to facilitate optimization
and scaling of the refinement to a large number of target variables.
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Abstract. As the LHC moves into its high-luminosity phase, the CMS experi-
ment must handle more complex data collected at much higher rates. While the
Geant4-based simulation application (FullSim) provides highly accurate simu-
lation to complement real data, FullSim’s intensive consumption of computing
resources becomes an increasing liability as the rates increase, while faster tools
offer an advantage. The fast MC production application (FastSim) delivers a
complete simulation with a factor of 10 speedup over FullSim, but introduces
inaccuracies in some observables. A specialized refinement method, Fast Per-
fekt, employs machine learning to improve the accuracy of FastSim. An initial
report of this work focused on the refinement of jet flavor tagging observables.
This article presents an update on the refinement, focusing on PUPPI jets with
Run 3 data-taking conditions. Refinement is extended to include jet transverse
momentum as well as its propagation to missing transverse momentum. A grid-
based framework and real-time monitoring system have been developed to fa-
cilitate optimization and scaling of the refinement to a large number of target
variables.

1 Introduction

The CMS experiment [1] at the CERN LHC is preparing to record an order of magnitude more
data after introducing new highly complex detectors [2]. In the upcoming High-Luminosity
LHC (HL-LHC) runs, efficiently processing and analyzing this large quantity of data will be
essential for maintaining the experiment’s scientific output and ensuring quality results [3], as
will producing sufficiently large and accurate simulated data sets to complement the observed
data.

The physics analysis pipeline relies on simulation. To address the increasing computa-
tional demands, the CMS experiment employs two distinct simulation chains, called FullSim
and FastSim. FullSim [4, 5], based on the Geant4 toolkit [6, 7], simulates the detector re-
sponse to collision events at state-of-the-art accuracy, based on realistic transport of particles
traversing and interacting with the detector. Although highly accurate, FullSim also has high
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computational intensity, which results in slower processing, posing a challenge for scalability
in the high-luminosity era. In contrast, FastSim [8–10] implements a set of approximations
that significantly reduce computation time, achieving speeds approximately ten times faster
than FullSim. FastSim brings a significant advantage for statistically limited analyses. How-
ever, the acceleration comes at the cost of reduced accuracy in certain observables.

To increase FastSim’s accuracy while maintaining its edge in throughput, a procedure for
refining FastSim has been developed based on machine learning (ML): a regression neural
network (NN) is trained to refine the FastSim outputs to be more similar to FullSim. A pro-
totype, based on the Fast Perfekt method [11], was recently introduced [12], focusing on jet
flavor observables. This proceeding presents an update on the effort to refine FastSim, ex-
tending to the jet momentum and its impact on the missing transverse momentum pmiss

T . This
strategy aims to ensure that the CMS collaboration can effectively navigate the challenges of
the HL-LHC.

2 Methodology

Following the methodology of Ref. [12], the training focuses on the simulation of gluino pair
production in the framework of the simplified model T1tttt [13] generated using the pythia
8.309 event generator [14] at leading order precision. Each gluino decays into a pair of top
quarks and a neutralino, yielding a diverse range of final state objects, including leptons and
jets of all flavors over a wide energy range, giving broad support for the phase space of most
applications.

Identical sets of generated events are processed with FullSim and FastSim separately, and
each generated jet is matched to its reconstructed FullSim and FastSim counterpart, resulting
in “jet triplets”. A summary of the jet reconstruction and selection is given in Table 1.

Table 1: Jet reconstruction and selection parameters for the training dataset.

Parameter Value
Jet algorithm anti-kT PUPPI jets [15–18]
Distance parameter (R) 0.4
Jet/jet matching (∆R) < 0.2
Overlap removal (∆R) < 0.5
pT > 15 GeV
|η| < 5.0

To preserve the association between reconstructed and generator-level jets, the generated
jets, FullSim jets, and FastSim jets are required to be separated from neighboring jets (in the
same collection) by ∆R > 0.5. The resulting training sample comprises approximately 6×106

jet triplets.

2.1 Network training

The task of the NN is to modify the FastSim jet properties in order to render them as similar
as possible to their more accurate FullSim counterparts. The NN takes as input [x⃗Fast, g⃗] and
outputs a refined vector x⃗Refined Fast; the concatenation of this output and the generator vector
[x⃗Refined Fast, g⃗] is compared to the target FullSim vector ([x⃗Full, g⃗]). As shown in Table 2, the
process uses four key jet flavor tagging observables derived from the DeepJet algorithm [19]:
B for generic b-tagging, and CvB, CvL, and QvG for discrimination of charm vs. bottom,



charm vs. light, and quark vs. gluon, respectively. The refinement is guided by auxiliary
parameters (g⃗) including generator-level pT, η, and true hadron flavor information.

Parameter Definition
Input: x⃗T

Fast

(
pT,Fast,BFast,CvBFast,CvLFast,QvGFast

)T
Auxiliary Parameters (g⃗) pT,GEN, ηGEN, true hadron flavor (b, c, or uds/g)

Target: x⃗T
Full

(
pT,Full,BFull,CvBFull,CvLFull,QvGFull

)T
Table 2: The FastSim input features, FullSim output targets, and auxiliary parameters.

2.2 Network architecture

The refinement network is a ResNet-like NN [20] that estimates the residual differences be-
tween FastSim and FullSim, and adds these residuals to the FastSim. The architecture com-
prises three main components, as illustrated in Fig. 1: a pre-processing layer, a series of four
residual blocks, and a post-processing layer, forming an end-to-end refinement pipeline.

The input layer accepts the FastSim feature vector (x⃗Fast) and auxiliary parameters (g⃗),
as depicted on the left side of Fig. 1. These inputs undergo pre-processing to normalize and
prepare the data for the network’s core processing stages. The backbone of the architecture
consists of four consecutive residual blocks, each incorporating skip connections to maintain
gradient flow and prevent information loss during training.

A single loss function, the maximum mean discrepancy (MMD), is minimized with re-
spect to the network parameters, comparing ensembles of jets to accommodate independent
stochasticity in both simulation chains. This is computed over batch sizes of 2048. This loss
is combined with an additional constraint that maintains unitarity among the flavor observ-
ables using the modified differential method of multipliers.
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Figure 1: The architecture of the refinement network, taken from [11]. The diagram shows the
complete processing pipeline from FastSim inputs through residual blocks to refined outputs,
including the dual loss function implementation. In the presented application, the MSE is not
used.

3 Results for jet flavor and momentum

Simultaneous refinement of jet flavor and jet pT has been performed and the results are shown
in Fig. 2 (upper left). The refined FastSim exhibits clear improvement in modeling. Good



refined modeling of jet pT is seen throughout the range spanning 30 GeV to 1 TeV, with a
marginal improvement seen outside these ranges. Where FastSim’s overly broad jet energy
resolution shifts the pT spectrum to higher values, the refinement brings the spectrum into
alignment with FullSim. The results of the b-tagging discriminant are shown in Fig. 2 (upper
right), where pronounced discrepancies in FastSim’s modeling are mostly mitigated by the
refinement. The FastSim test entry represents an independent sample of refined FatsSim jets,
included as a check of overtraining. The impact of the refinement on correlations among the
refined and auxiliary variables are studied in terms of Pearson coefficients. These coefficients
are displayed in Fig. 2 (lower), along with residuals of the correlations with respect to those
present in FullSim. Correlations among the refined FastSim variables are much closer to
those of FullSim, with the largest improvement observed the correlation between pT and the
quark-gluon discriminator. A small amount of mismodeling remains after refinement, but the
Fast Perfekt approach provides sufficient accuracy for typical analyses.
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Figure 2: Upper left: Comparison of refined and unrefined jet pT to FullSim. Upper right:
Comparison of refined and unrefined DeepJet b discriminator to FullSim. Lower 6 plots:
Correlation matrices for FullSim (left), FastSim (center), and refined FasSim (right), with the
corresponding residual differences to FullSim shown below.



4 Propagation of corrections to missing momentum

The impact of refinement on the missing transverse momentum is also studied. The so-called
hard pmiss

T is used, defined as the magnitude of the negative vector sum of the pT of jets within
an event that satisfy pT ≥ 30 GeV and |η| ≤ 5.

The effect of refinement on the jet pT is propagated as a correction to the pmiss
T [21]. This

correction amounts to replacing the contribution of each jet’s momentum to the pmiss
T with

that of the refined jet.
The result of these corrections is shown in Fig. 3. The distribution of the refined FastSim

hard pmiss
T aligns closely with that of FullSim, while the original FastSim deviates slightly

in the lowest and highest ranges. The event-by-event difference between the FastSim and
FullSim hard pmiss

T before and after refinement, ∆Hardpmiss
T is shown for all events, as well

as its profile in bins of FullSim hard pmiss
T . The differences corresponding to refined FastSim

are narrower and more centered around zero than for the unrefined FastSim, indicating an
event-by-event improvement in FastSim modeling. A comparison of per-jet pT differences to
FullSim between FatSim and refined FastSim is also shown, indicating improved modeling
of FastSim after refinement, particularly on the lower tail of the jet response.
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Figure 3: Upper: per-event difference in pmiss
T between FastSim and FullSim, inclusive (left)

and profiled in bins of pmiss
T (right). Lower left: Distribution of pmiss

T for FullSim, FastSim,
and refined FastSim and the ratio of each FastSim version to FullSim. Lower right: per-jet
difference in pT between FastSim and FullSim jets, as well as those between refined FastSim
and FullSim jets.



5 Training and monitoring framework

A framework for launching and monitoring the NN training has been developed. This frame-
work facilitates scaling the refinement to more complex networks and larger numbers of input
variables. A schematic of the monitoring system is shown in Fig. 4. The tabulation of the grid
search results is illustrated in Fig. 4 (upper), where the progress is viewable as colored bars,
and real-time information about the training status is provided through links. Models trained
in the grid search are shown under a “Grouped Trainings” tab, where the training variations
are organized based on the input variables and the object class. A comprehensive summary
table, shown in Fig. 4 (middle), highlights the best-performing models based on predefined
metrics, alongside detailed loss values for each model. Finally, real-time loss values of the
training are monitored in Fig. 4 (lower).

This framework addresses the growing number of otherwise unconstrained choices in the
network and training steps, such as input variable transformation functions, the depth and
complexity of the network, and the learning rate.

6 Conclusion

An update to a machine learning-based approach to refine reconstructed jets from Fast
Simulation in the CMS experiment is presented. A ResNet-like network, comprising pre-
processing layers, a series of residual blocks, and a post-processing layer, estimates a residual
correction to augment the FastSim output variables to render them more like FulLSim. The
jet transverse momentum pT has been incorporated in addition to jet flavor tagging discrim-
inators, which were introduced in the first iteration of the study. The jet pT correction sub-
stantially improves the modeling of the jet pT and also improves the modeling of pmiss

T when
propagated to that variable. A grid search mechanism for hyperparameter tuning has been
developed, along with a submission and monitoring framework that tracks training progress
in real time, facilitating the scaling of the refinement methods to a large number of input pa-
rameters. Given the computational challenges posed by the upcoming High Luminosity LHC
era, this work addresses the need for efficient yet accurate simulation methods.



Figure 4: Various features of the training monitoring system: the grid search tabulation (up-
per), the summary table (middle), and the real-time loss monitoring (lower).
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