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Quantum information observables, such as entanglement measures, provide a powerful way to
characterize the properties of quantum states. We propose to use them to probe the structure of fun-
damental interactions and to search for new physics at high energy. Inspired by recent proposals to
measure entanglement of top quark pairs produced at the LHC, we examine how higher-dimensional
operators in the framework of the SMEFT modify the Standard Model expectations. We explore
two regions of interest in the phase space where the Standard Model produces maximally entangled
states: at threshold and in the high-energy limit. We unveil a non-trivial pattern of effects, which
depend on the initial state partons, qq̄ or gg, on whether only linear or up to quadratic SMEFT con-
tributions are included, and on the phase space region. In general, we find that higher-dimensional
effects lower the entanglement predicted in the Standard Model.

I. INTRODUCTION

In 1989, Wheeler suggested that all physical quantities
have a theoretical information origin, a concept which has
been later popularized as the "it from bit" principle [1,
2]. Quantum Information (QI) theory provides us with
a set of tools and observables that are designed to unveil
the inner behaviour of quantum mechanics. While these
phenomena have been widely tested in applications at
the atomic and even human scales, their study at higher
energies has not been undertaken.

Central to quantum information is entanglement, i.e.,
the property of quantum systems to maintain a correla-
tion even when they are separated. Since the ground-
breaking papers by Einstein, Podolski, and Rosen [3],
the series of papers by Schrödinger [4–6] and Bell’s The-
orem [7], entanglement has evolved from a puzzling and
uncomfortable phenomenon to the keystone of quantum
computation, as recently demonstrated by the quantum
supremacy [8].

Vastly studied across the fields, ranging from worm-
holes [9] to bacteria [10], QI based analyses have led to
significant advances not only in computation but also in
fundamental questions, such as the black hole informa-
tion paradox [11]. Many of such advances characterize
new approaches in outstanding problems in string theory
as well as in quantum field theory [12]. In the latter case,
for instance, a conjecture linking entanglement suppres-
sion and the presence of symmetries was proposed based
on an observation for nuclear forces [13] and later was
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also seen in the context of black hole physics [14, 15] (see
also Ref. [16]). Proposals for understanding properties
of the Standard Model (SM) of particle physics based on
QI properties have also appeared [17].

In this work we propose to exploit entanglement
through specific measures, e.g., the concurrence, to con-
strain new physics effects on the strength and type of
interactions between SM particles in the context of the
SM Effective Field Theory (SMEFT). As a first appli-
cation of this idea, we consider the production of a top
quark pair at the LHC and, in particular, the quantum
state of their spins, which, as shown in Refs. [18–20], can
be fully reconstructed from the decay products of the top
and anti-top quarks and can be observed with high sta-
tistical significance already with Run II data. Further
studies on the violation of Bell inequalities in top-quark
pair production [19, 21] and Higgs decays to WW [22]
highlighted the potential of high-energy measurements
in establishing the quantum nature of fundamental in-
teractions.

Contrary to the other quarks, the top quark decays way
before its spin is affected by hadronization. The spin in-
formation is then imprinted in the decay products, and in
particular in direction of the charged lepton from the W
decay, which is 100% correlated with the corresponding
top spin [23]. Another advantage of top quark pairs is
that they can be characterized as simple bipartite qubit
systems. Refs. [18, 20] outlined an experimental detec-
tion strategy for the concurrence of the top pair, based
on measuring the differential cross-section with respect
to the angular separation of the charged leptons from
the top decays as a function of an upper cut on the top
pair’s invariant mass [24]. As the same strategy can also
be applied in the presence of new physics, we here limit
ourselves to studying the influence of new physics on the
entanglement, and neglect detector effects and other ex-
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perimental issues.
In Ref. [18], it was further shown that there exist two

regions of the tt̄ phase-space where the top quark spins
are maximally entangled: at threshold, when the par-
tonic center-of-mass energy ŝ = 2mt, and for high en-
ergies and θ = π/2, where the characteristic quantum
states are Bell states, singlet and triplet, respectively.

With the aim of establishing how new physics might
induce a modification of the quantum correlations, we
study the production of a top quark pair system within
the SMEFT framework, which provides a model inde-
pendent formulation of new interactions when the energy
scale associated to new physics is well separated from the
scale of the process. In order to gain a detailed under-
standing, we compute the analytical linear and quadratic
effects generated by dimension-six operators on the en-
tanglement. We find it most useful to explore their be-
haviour at phase-space points where the entanglement
in the SM is maximal. In doing so, two immediate
questions arise: Are these SM’s maximally-entangled re-
gions affected by the SMEFT? Can SMEFT induce new
maximally-entangled regions in the phase-space?

The paper is organized as follows. In Section II, we
review the entanglement concepts and measures in bi-
partite systems which are then applied to top quark pair
production later. In Section III we explore the effects
of SMEFT higher-dimensional operators at linear and
quadratic level in the full phase-space as well as for the
angular-averaged concurrence. Finally, in Section IV we
explore the quantum state in different phase space re-
gions. We draw our conclusions in Section V.

II. TOP PAIR SPIN CORRELATIONS

Central to the analysis of top-pair spin correlations is
the spin production density matrix, also known as the
R-matrix

RIη1η2,ζ1ζ2 ≡
1

NaNb

∑
colors

a,b spins

M∗η2ζ2Mη1ζ1 (1)

with Mηζ ≡ 〈t(k1, η)t̄(k2, ζ)|T |a(p1)b(p2)〉, where T is
the transition matrix element, I = ab denotes the initial
state, Na,b is the number of degrees of freedom of the
respective initial state particles a and b, ki (pi) are the
momenta of the final (initial) state particles, and η (ζ)
are the (anti-)top spin indices. Note that this matrix is
similar to the cross-section, but with uncontracted final-
state spin-indices. The R-matrix is commonly expressed
in terms of the Pauli matrices σi, also known as the Fano
decomposition [25], which reads

R = Ã12⊗12+B̃+
i σ

i⊗12+B̃−i 12⊗σi+C̃ij σi⊗σj , (2)

where a sum over i, j = 1, 2, 3 is implicit. The spin-
correlations between the sub-systems are captured by the
C̃i,j coefficients, while the B̃±i coefficients describe the

degree of (anti-)top polarization, and Ã is related to the
differential cross-section by

dσ

dΩdŝ
=
α2
sβ

ŝ2
Ã (ŝ,k) , (3)

where k is the top quark direction, ŝ the invariant mass
of the top quark pair and β =

√
1− 4m2

t/ŝ the veloc-
ity of the top quark in the center-of-mass frame with
the top mass mt = 172.76 GeV [26]. Altogether, there
are 15 Fano coefficients which, once determined, allow us
to fully characterize the quantum state of the two-qubit
system.

In the following, we consider top quark pair produc-
tion at the LHC in proton proton collisions, where the
top pairs are at leading order (LO) created through non-
interfering channels. The relevant contributing initial
states are the scattering of two gluons and of a quark
anti-quark pair. As a result, the quantum state of the
system is mixed, with the total density matrix given
by the weighted sum of the channel-specific matrices.
The weights depend on the structure of the proton de-
scribed by the parton distribution functions. The full
R-matrix is hence given by the sum over the partonic
channels, each weighted by the corresponding luminosity
functions LI(ŝ)

R(ŝ,k) =
∑
I

LI(ŝ)RI(ŝ,k) . (4)

The gg-initiated channel dominates up to TeV top quark
energies, when the qq̄ channel becomes comparable.

The density matrix describing the quantum state is
given by the normalized R-matrix, i.e., ρ = R/tr(R),
which we expand in terms of the coefficients B±i = B̃±i /Ã

and Cij = C̃ij/Ã as

ρ =
12⊗12 +B+

i σ
i⊗12 +B−i 12⊗σi + Cij σ

i⊗σj
4

. (5)

In order to obtain explicit values for the entanglement,
we calculate the coefficients in the so-called helicity basis,
which consists of an orthonormal basis in the centre-of-
mass frame

{k,n, r} : r =
(p− zk)√

1− z2
, n = k × r, (6)

where p and k are the unit vectors along the beam axis
and top quark direction, and we define z ≡ k · p = cos θ.
For convenience, we switch to the variables z and β for
the remainder of the presentation. In this basis, the spin
density matrix for top quark pair production in the SM at
LO in QCD simplifies significantly [27]: invariance under
CP renders Cij symmetric and B+

i = B−i , and non-zero
Ckn, Crn and B±n are then only generated at the one-
loop level by absorptive parts. Furthermore, B±k and B±r
vanish as they require P -odd interactions. As we will
focus only on CP even operators, the first two statements
also hold true when adding the SMEFT contributions.
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A. Entanglement

The most general bipartite quantum state is described
by a normalized density matrix ρ ∈ D(Hab), where the
space D(Hab) is formed by the positive-semidefinite op-
erators acting on the full system’s Hilbert space Hab =
Ha⊗Hb. Whenever the state can be written as a convex
combination of product states [3]

ρab =
∑
k

pk ρ
k
a ⊗ ρkb (7)

the state is said to be separable. A state which cannot
be written is such form is said to be entangled. This no-
tion was introduced by Schrödinger [5] under the name
of Verschränkung to describe that the best knowledge of
the whole system Hab does not imply the best possible
knowledge of its parts, Ha and Hb. These formal defini-
tions are more transparent when a quantitative measure
of entanglement is given.

Several entanglement measures and criteria are avail-
able, cf. e.g. Refs. [28, 29] for a detailed discussion. In
the following, we quantify the degree of entanglement by
defining a physical quantity called concurrence [30]

C[ρ] = max (0, λ1 − λ2 − λ3 − λ4) , (8)

where λi are the increasingly ordered eigenvalues of the
matrix ω =

√√
ρ̃ρ
√
ρ̃ with ρ̃ = (σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)

and ρ∗ denoting the complex conjugate of ρ, or, equiva-
lently, the square roots of the eigenvalues of the matrix
ρρ̃. When C[ρ] > 0, the system is said to be entangled
and the case of C[ρ] = 1 corresponds to quantum config-
urations of maximal entanglement.

As a simpler criterion for entanglement, we further em-
ploy the Peres-Horodecki Criterion (PHC) [31, 32], which
states that ρ is entangled, if the partial-transpose state

ρTa
sep ≡ (T⊗ 1)(ρsep) =

∑
k

pk (ρka)T ⊗ ρkb ≥ 0 (9)

is non-negative with unit trace. This is a necessary con-
dition for entanglement for 2⊗ 2 bipartite systems.

For the density matrix in Eq. (5), in the helicity basis,
the PHC implies [18]

∆ ≡ −Cnn + |Ckk + Crr| − 1 > 0 (10)

as a sufficient condition for entanglement. For the SM at
LO in QCD, ∆ > 0 is a necessary condition and the
concurrence can be written in terms of ∆ as C[ρ] =
max(∆/2, 0). The corresponding expression including
SMEFT corrections is obtained by expanding ω in 1/Λ2

to quadratic order, where Λ is the new physics scale, and
can be found in Appendix C.

The correlation matrix further simplifies when aver-
aging over the solid angle. Switching to the beam ba-
sis and defining the angular averaged R-matrix following
Ref. [18],

R̄ = (4π)−1

∫
dΩR(ŝ,k) , (11)

0

0.2

0.4

0.6

0.8

1

β
2

pp

0 0.2 0.4 0.6 0.8 1
|cos θ|

0

0.2

0.4

0.6

0.8

1

β
2

gg

0 0.2 0.4 0.6 0.8 1
|cos θ|

qq̄

0

0.2

0.4

0.6

0.8

1

C[ρ]

Figure 1: SM contribution for the concurrence in the
gluon- (bottom left) and quark-initiated (bottom right)
channels, as well as in the full pp collision (top). The
black lines indicate the boundaries of the entangled

regions based on Eq. (10).

as well as the corresponding density matrix ρ̄ = R̄/tr(R̄),
the correlation matrix becomes diagonal with two degen-
erate eigenvalues, Cij = diag(C⊥, C⊥, Cz), and the only
non-vanishing entry in B±i is in the z component. The
PHC then implies the sufficient condition [18]

δ ≡ −Cz + |2C⊥| − 1 > 0 (12)

for entanglement, which becomes a necessary condition
for B±z = 0 with the concurrence given by C[ρ] =
max(δ/2, 0). The expression for the concurrence in the
SMEFT with B±z 6= 0 is presented in Appendix C.

B. Quantum states

The SM contribution to the concurrence in terms of
β2 and z = cos θ is shown in Fig. 1. In the gg-channel,
the top quark pair is produced in a maximally entangled
state at production threshold, i.e., for β = 0 at any value
of z, as well as at high transverse momentum, i.e., when
β = 1 and cos θ = 0. As noted in [18], the gluon-induced
quantum state ρSM

gg (β, z) becomes a Bell state in these
regions: at threshold it corresponds to a singlet state,
while at high energy it is a triplet state along the n-axis

ρSM
gg (0, z) = |Ψ−〉n〈Ψ−|n, ρSM

gg (1, 0) = |Ψ+〉n〈Ψ+|n,
(13)

where the density matrices are defined in terms of the
Bell basis (or Einstein–Podolsky–Rosen pairs) along the
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n-axis

|Φ±〉n =
|↑↑〉n± |↓↓〉n√

2
, |Ψ±〉n =

|↑↓〉n± |↓↑〉n√
2

(14)

and similarly along the p-axis. In the qq̄ initiated chan-
nel, the top-pair is entangled across all phase-space ex-
cept at threshold, where we have a mixed but separable
state. At high energies, the same maximally entangled
state as in the gg-channel is produced

ρSM
qq̄ (1, 0) = |Ψ+〉n〈Ψ+|n. (15)

Simulation-based analyses of the top-pair entangle-
ment in the SM have been performed in Refs. [18, 19],
where evidence was shown for such effects to be detected
at the LHC with high statistical significance. We assume
that the same strategies used to reconstruct the quantum
states from the decay products of the top quarks remain
valid when adding SMEFT operators, since these opera-
tors do not affect the correlations between the top spin
and the charged lepton decay product [33].

III. ENTANGLEMENT IN THE SMEFT

To study the impact of higher-dimensional operators
on the entanglement in top quark pair production within
the SMEFT, we use a slightly modified version of the
Warsaw basis [34], detailed in [35],

LSMEFT = LSM +
1

Λ2

∑
i

ciOi , (16)

where we restrict ourselves to CP -even operators at
dimension-six. Working at LO in QCD, the relevant op-
erators to tt̄ production are the zero- and two-fermion
operators OG,OϕG and OtG, as well as the two-light-two-
heavy four-fermion octets and singlets [27, 33, 35, 36],
whose definitions are collected in Appendix A. In order
to have a tractable amount of four-fermion operators, we
have imposed a U(2)q ⊗ U(2)u ⊗ U(3)d flavour symme-
try [37]. For the purpose of illustration, we chose values
of the Wilson coefficients that may exceed the current
limits from the SMEFit collaboration [38] in most of our
plots. The conclusions however remain true also for val-
ues within these bounds.

We now turn to investigating the effects of dimension-
six SMEFT operators on the entanglement. Such opera-
tors will lead to an EFT contribution to the R-matrix as
well as the density matrix,

ρ =
RSM +REFT

tr(RSM) + tr(REFT)
. (17)

The contributions of each SMEFT operator consid-
ered here to the Fano coefficients are given in Ap-
pendix A. The concurrence and the entanglement mark-
ers in Eqs. (10) and (12) are then obtained expanding

in the Wilson coefficients. The corresponding expres-
sions can be found in Appendix C. In the following, we
will study the entanglement taking into account both lin-
ear, O(Λ−2), and quadratic effects [39], O(Λ−4), to these
quantities. Then, averaging over the solid angle, we fur-
ther present the entanglement as a function solely of the
top-quark velocity β.

A. Linear interference and quadratic effects

To examine the impact of the linear and quadratic
SMEFT corrections on the entanglement, we consider the
PHC and the entanglement marker Eq. (10) in SMEFT
and compare it to the marker ∆0 in the SM. Since
the absolute value in Eq. (10) does not allow to fac-
tor out the Wilson coefficients, we define at linear or-
der ∆1 ≡ ∆ − ∆0, where ∆ is calculated from the den-
sity matrix Eq. (17) including the SM and linear cor-
rections. Equivalently, at the quadratic order, we define
∆2 ≡ ∆ − (∆0 + ∆1), where we now also include the
dimension-six squared contributions to ρ in ∆.

Figure 2 depicts the new physics contributions of the
operator OtG to ∆ relative to the SM value for ctG =
0.1 TeV−2, which lies within the limits from current
fits [38]. Note that ∆ becomes negative in the absence
of entanglement, whereas the concurrence vanishes in the
entire unentangled region. Hence, we can still take the
ratios ∆1,2/∆0 in this region. However, at the bound-
ary of the entangled phase space (along the black lines in
Fig. 2), ∆ vanishes and the ratios diverge.

Let us start our discussion with the gg-channel, where
only OtG, OG and OϕG contribute. At leading order,
we notice that the SM’s point of maximal entanglement
at threshold is unchanged by linear interference effects,
as can be seen in the middle left panel of Fig. 2, where
the concurrence is zero for β → 0. This is also apparent
from the β dependence of the Fano coefficients, explic-
itly given in Appendix A 2. As both cG and cϕG always
come accompanied by a factor of β2, it is evident that
their contributions vanish at threshold to order O(Λ−2).
While the contributions of OtG to the individual Fano
coefficients survive for β → 0, they cancel at the concur-
rence level, giving zero contribution to the entanglement.
Hence, including linear effects, top quark pairs produced
in the gg-channel remain maximally entangled at thresh-
old.

At quadratic orderO(Λ−4), on the other hand, a differ-
ent behaviour emerges. Although the contribution from
OϕG vanishes at threshold, the other operators OG and
OtG decrease the concurrence at the point of maximal
entanglement of the SM and induce a triplet state on top
of the SM’s singlet state. This effect will be discussed in
further detail in Section IV.

The other point of maximal entanglement in the SM,
β → 1 and z = 0, where the SM produces a triplet state,
is more delicate. As β → 1 corresponds to ŝ → ∞, the
EFT is not valid at this point. We can however consider
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Figure 2: Relative contributions of the linear (left) and
quadratic (right) effects of the chromomagnetic
operator for ctG/Λ2 = 0.1 TeV−2 to the PHC

entanglement marker ∆.

a region where β ∼ 1 but m2
t � ŝ � Λ2, such that top

quarks can be considered massless, yet within the regime
of validity of the EFT. Then, for all of the zero- and
two-fermion operators we consider, the amount of entan-
glement produced in the SM is decreased by the squared
SMEFT correction, while the behaviour of the linear in-
terference terms depends on the sign of the corresponding
Wilson coefficient. For sufficiently large negative values
of the coefficient, this point of maximal entanglement can
extend to a larger region.

Moving on to the qq̄-initiated channel, contributions
arise from OtG as well as from the four-fermion opera-
tors. The latter can be classified based on their behaviour
upon top-quark charge conjugation, see Appendix A2
and Ref. [40]. At linear order, we observe that Ãqq̄EFT and
C̃qq̄ij,EFT are only affected by the combination of operators
corresponding to two vector or two axial-vector currents,
whereas the combinations consisting of one vector and
one axial-vector current only enter in the B±i coefficients.
The SMEFT corrections at quadratic order are more in-

volved, and in particular also include contributions from
the singlet operators. The analytical results can be found
in Appendix A 3.

The linear and squared corrections from the SMEFT
in the qq̄ channel are shown for the example of OtG in
the lower panel of Fig. 2. There are no contributions
to ∆ at threshold, even at the quadratic level, whereas
at high energies, the linear and quadratic effects may
modify the level of entanglement around the SM point
of maximal entanglement, where the contribution of the
latter always decreases the concurrence at high pT (the
former of course depend on the sign of the respective
Wilson coefficient).

In order to explore these effects in detail, in the follow-
ing section we study the angular-averaged concurrence
and the explicit quantum states.

B. Angular averaged concurrence

To study the threshold region, we switch from the he-
licity basis Eq. (6) to the beam basis (with the z axis
along the beam direction), and perform the angular inte-
gration as suggested in [18]. The analytical expressions
for the Fano coefficients derived from the averaged den-
sity matrix in Eq. (11) can be found in Appendix B.

The new physics effects on the corresponding concur-
rence as a function of β are depicted in Fig. 3 on the
example of OtG (bottom) and O(8)

tq (top), setting the
Wilson coefficients to ci/Λ

2 = ±0.7 TeV−2, where the
blue (orange) lines correspond to the positive (negative)
sign. The black solid line indicates the value in the SM,
whereas the dashed and dotted lines show the concur-
rence including linear and quadratic contributions.

Let us first consider the effects of OtG on gg-initiated
production. In the SM, the angular-averaged concurrence
decreases from C[ρ] = 1 at threshold towards high ener-
gies as a function of β. This behaviour is not modified by
the EFT. However, the critical point where the entangle-
ment marker crosses zero changes depending on the value
of the Wilson coefficient due to the linear contribution,
and is further modified by the squared corrections. Fur-
thermore, as already seen in Fig. 2, the linear EFT contri-
butions do not affect at all the concurrence at threshold.
However, the effects from the squared operators OtG and
OG can lead to a decrease of the level of entanglement,
as can be seen in the lower right panel of Fig. 3. We
delay a detailed discussion to this effect to Section IV.
The operator OϕG does not induce any of such changes.

In the qq̄ channel, where the concurrence of the
angular-averaged state vanishes in the SM, the correc-
tions induced by the dimension-six operators are too
small to induce entanglement. The new physics con-
tribution in this channel may, however, still affect the
concurrence when considering the total spin density ma-
trix Eq. (4) in pp collisions. The effect here comes mostly
from the corrections to Ã, as these determine the balance
between the gg and qq̄ contributions to the total density
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Figure 3: Concurrence averaged over solid angle as a
function of the top quark velocity β for c(8)
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matrix. Hence, in the case of pp collisions displayed in
the left panel of Fig. 3, we can observe an effect of the
EFT already at threshold, even at the linear level. This
also holds true for four-fermion operators, such as for
instance O(8)

tq shown in the upper panel.

IV. QUANTUM STATES IN THE SMEFT

In this section we consider the effects of new physics
on the quantum state of the tt̄ pair in different regions
of the phase space. Observables directly related to the
quantum state probe different and complementary direc-
tions in the parameter space compared to the scattering
amplitude. In the following, we discuss in particular two
phase space regions of interest, i.e., the production of top
quarks at threshold, characterised by high statistics, and
the production at high pT in the central region, where
top-quark mass effects become negligible.

A. Threshold region

In the SM, the gg initiated channel at threshold is
characterised by a pure maximally-entangled state as
in Eq. (13), with the top quark spins forming a singlet
state of spin 0. The presence of new physics effects can
potentially change the picture. In particular, we find that
the chromo-magnetic operator OtG and the triple-gluon
operator OG change the quantum state, which is then
not a pure state anymore. As a matter of fact, these op-
erators induce the presence of a triplet state of spin 1,
and the density matrix is therefore described by a mixed

state:

ρEFT
gg (0, z) = pgg|Ψ+〉p〈Ψ+|p + (1− pgg)|Ψ−〉p〈Ψ−|p .

(18)

Note that here the spins are defined with respect to the
beam direction p. The probability of being in a triplet
state is given by pgg = 72m2

t (3
√

2mt cG + v ctG)2/7Λ4 ,
which shows that no linear effects are present and only
the squares contribute. In particular, we find a flat di-
rection for a specific combination of cG and ctG, while
the operator OϕG does not affect the quantum state at
threshold.

For the qq̄ channel, in the SM the spin density matrix
is characterised by a mixed separable state:

ρSM
qq̄ (0, z) =

1

2
|↑↑〉p 〈↑↑|p +

1

2
|↓↓〉p 〈↓↓|p . (19)

Specifically, the probability of having both, top and anti-
top quark, with spin up (down) is 1/2 in the SM. The
EFT effects in this case do not change the structure of
the state, but the eigenvalues of the density matrix are
affected and a preference for one spin direction is in gen-
eral observed:

ρEFT
qq̄ (0, z) = pqq̄ |↑↑〉p 〈↑↑|p +(1−pqq̄) |↓↓〉p 〈↓↓|p , (20)

where pqq̄ = 1
2 − 4

c
(8),u
V A

Λ2 + O(1/Λ4), which also includes
corrections at linear order in the Wilson coefficients [41].
Here, c(8),u

V A = (−c(8,1)
Qq − c

(8,3)
Qq + c

(8)
tu − c

(8)
tq + c

(8)
Qu)/4.

The spoiling of the symmetry is due to P-violating in-
teractions induced by dimension-six operators but is also
present if electroweak corrections are taken into account.

In Fig. 4 we show contour plots of the probabilities pgg
and pqq̄. In the case of the quark initiated channel, we
choose O(8)

tu and O(8,3)
Qq as a pair of representative four-

fermion operators. In addition to the probabilities, we
also plot contours of the relative EFT effects on the scat-
tering amplitude, in order to highlight the complemen-
tarity of the two observables, which are clearly probing
different directions in the parameter space.

B. Central high-pT region

The other interesting region to consider is the one char-
acterised by high pT . In the following, we set θ = π/2
(z = 0) and look at the probability for the top quark pair
to be in a triplet state

pΨ+ = 〈Ψ+|n ρ |Ψ+〉n , (21)

which, in particular, is the quantum state for the SM in
the limit of β → 1, both in the gg and the qq̄ initiated
channels. However, as already discussed above, the limit
β → 1 is ill-defined in the presence of higher dimensional
operators. We therefore study the probability as a func-
tion of the invariant mass ŝ of the top quark pair (or
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Figure 4: Probability to produce a triplet (left) or
both-spin-up (right) state at threshold (β = 0) in the gg
or qq̄ channel, respectively. The contour lines indicate
the relative corrections of the EFT to the scattering

amplitude.
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Figure 5: Probability for a triplet configuration in the
gg channel at cos θ = 0, including linear and quadratic
SMEFT contributions. The inlay zooms in on high

energies.

partonic center-of-mass energy), where the EFT can be
considered valid if ŝ < Λ2.

In Fig. 5, we plot the probability of the quantum state
to be in a triplet configuration for the gg channel, depict-
ing the linear (dashed) and quadratic (dotted) effects of
OtG (blue) and OφG (orange) for a Wilson coefficient of
ci/Λ

2 = 0.1 TeV−2. As we can observe, the probability
in the SM converges towards 1, while the EFT effects
become particularly manifest at high energy where we
start to see deviations in the probability. Similar effects
are observed in the quark/anti-quark initiated channel.
Once again, the interesting aspect is that the observables
related to the quantum state are probing a different direc-
tion in the parameter space with respect to the scattering
amplitude, offering new and promising ways to disentan-
gle the various higher-dimensional effects.

V. CONCLUSIONS

We have proposed to use quantum observables, such as
entanglement, to assess the impact of new physics effects
in high-energy interactions. Using two measures, we have
explored how linear and quadratic effects from SMEFT
dimension-six operators affect entanglement in top quark
pairs at the LHC. In particular, we have focused on two
phase-space regions, at threshold and at high energies,
where the SM produces maximally entangled states.

With entanglement being at the core of quantum me-
chanics, one might hope that it will provide fundamental
information on the structure of the effective field theory
as much as unitarity, analyticity and positivity do on gen-
eral properties of the scattering amplitudes. At a more
practical level quantum observables probe different direc-
tions in the SMEFT parameter space with respect to the
usual differential observables and therefore can provide
new constraints to be used in global fits.

In this first quantum SMEFT tomography study, we
have found that the linear interference effects of the
dimension-six operators studied here (OtG, OG, OϕG,
four-fermion operators) vanish at threshold. Hence, no
contribution to entanglement is present in this case.
This is obviously different across the phase-space where
whether the degree of entanglement is increased or de-
creased depends on the sign of the Wilson coefficients.
This can be seen by the change of the boundaries of the
entangled phase-space regions for the different contribu-
tions.

We have also observed that the dimension-six squared
contribution to the concurrence is always negative, re-
gardless of the phase-space point. This includes the
threshold and high-energy limit, where it can also be
zero. Therefore, this contribution always goes in the di-
rection of decreasing the entanglement between the top
quark pair, which is most relevant when the SM produces
a maximally entangled state.

We are therefore able to answer the questions posed in
the introduction as follows. The line of maximal entan-
glement in the SM at threshold is unchanged by linear
interference effects, while squared effects decrease the en-
tanglement by inducing a triplet state. In this case, no
new regions of maximal entanglement are induced by the
SMEFT. However, for large values of the Wilson coeffi-
cients, the linear contributions expand the point at high
energy to a wider region of phase space.

While these statements hold true when investigating
the individual gg and qq̄ production channels, the picture
is more involved when considering full pp collisions. In
this case, new physics can modify the entanglement even
at the linear level, predominantly by altering the balance
between the two channels.

Being exploratory, our study opens a number of ques-
tions worth being investigated. The most natural one
is how much these new observables will help in better
constraining top-quark SMEFT operators in the global
fits, also in comparison with usual spin correlation mea-
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surements [42, 43]. Another one is whether a quantum
SMEFT analysis could be used for other processes rel-
evant for constraining new physics at present and fu-
ture colliders. A promising one is the production of a
pair of massive bosons which, being a bipartite qutrit
system [22], offers a richer quantum structure. Fi-
nally, it will be interesting to explore whether the non-
trivial quantum behaviour that we have identified in the
SMEFT, is the result of the employed approximations
(such as tree-level computations and considering con-
tributions up to dimension-six) or is deeply rooted and
maintained at higher orders both in the gauge couplings
and in the EFT expansion.
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Appendix A: Spin-density matrix coefficients

We calculate the spin density matrix Eq. (1) at LO analytically, including both linear and squared contributions from
the SMEFT operators, using FeynCalc 9.3.1 [44–46] and generating the contributing diagrams with Feynarts 3.11 [47].
We use the SMEFT@NLO [35] FeynRules model [48]. The relevant operators for our analysis are [35]

OG = gsf
ABCGA,µν GB,νρ GC,ρµ , OϕG =

(
ϕ†ϕ− v2

2

)
GµνA GAµν , OtG = gs(Q̄σ

µνTA t)ϕ̃GAµν + h.c. , (A1a)

where ϕ is the Higgs doublet, as well as the color-octet and -singlet four-fermion operators

O(8,1)
Qq = (Q̄LγµT

aQL)(q̄Lγ
µT aqL) , O(8,3)

Qq = (Q̄LγµT
aσAQL)(q̄Lγ

µT aσAqL) , (A2a)

O(8)
tu = (t̄RγµT

atR)(ūRγ
µT auR) , O(8)

td = (t̄RγµT
atR)(d̄Rγ

µT adR) , (A2b)

O(8)
Qu = (Q̄LγµT

aQL)(ūRγ
µT auR) , O(8)

Qd = (Q̄LγµT
aQL)(d̄Rγ

µT adR) , (A2c)

O(8)
tq = (t̄RγµT

atR)(q̄Lγ
µT aqL) , (A2d)

with the corresponding singlet operators given by the same expressions but without the SU(3) generators T a. Here,
QL and qL denote heavy and light left-handed quark doublets, respectively, and uR and dR are the right-handed light
quarks.

The Fano coefficients of the expansion in Eq. (2) are obtained from

Ã =
1

4
tr(12 ⊗ 12R) , B̃+

i =
1

4
tr(σi ⊗ 12R) , B̃−i =

1

4
tr(12 ⊗ σiR) , C̃i,j =

1

4
tr(σi ⊗ σj R) . (A3)

We then expand the coefficients X = Ã, C̃ij and B̃±i in the new physics scale Λ as

X = X(0) +
1

Λ2
X(1) +

1

Λ4
X(2) , (A4)

where X(0) corresponds to the pure SM, X(1) is the interference between the dimension-six operators and the SM,
and X(2) is the dimension-six squared contribution.

In order to obtain the density matrix for the full pp collision, we use the luminosity functions [49]

Lgg =
2τ√
s

1/τ∫
τ

dξ

ξ
fg (τξ) fg

(
τ

ξ

)
, Lqq̄ = 2

2τ√
s

1/τ∫
τ

dξ

ξ
fq (τξ) fq̄

(
τ

ξ

)
, (A5)
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where ξ2 = ŝ/s, q = u, d, s, c, b, and the fa(x) are the parton distribution functions (PDFs). The additional factor of
two in the quark luminosity function enters as the (anti-)quark can come from either proton. We use the NNPDF4.0
NNLO PDF set [50] with αs(mZ) = 0.118 provided by the LHAPDF6 [51] interface, and evaluate the PDFs at the
factorization scale Q2 = ŝ. We assume a top quark mass of mt = 172.76 GeV [26].

1. SM coefficients

For completeness, we here first present the Fano coefficients for the SM [52]. In the gg channel, we obtain

Ãgg,(0) = Fgg
(
1 + 2β2(1− z2)− β4(z4 − 2z2 + 2)

)
, (A6a)

C̃gg,(0)
nn = −Fgg

(
1− 2β2 + β4(z4 − 2z2 + 2)

)
, (A6b)

C̃
gg,(0)
kk = −Fgg

(
1− 2z2(1− z2)β2 − (2− 2z2 + z4)β4

)
, (A6c)

C̃gg,(0)
rr = −Fgg

(
1− (2− 2z2 + z4)β2(2− β2)

)
, (A6d)

C̃
gg,(0)
rk = Fgg 2z (1− z2)3/2β2

√
1− β2, (A6e)

and in the qq̄-channel

Ãqq̄,(0) = Fqq̄
(
2 + β2(z2 − 1)

)
, C̃qq̄,(0)

nn = Fqq̄β
2
(
z2 − 1

)
, C̃

qq̄,(0)
kk = Fqq̄

(
β2 + z2(2− β2)

)
,

C̃qq̄,(0)
rr = Fqq̄

(
2− β2 − z2(2− β2)

)
, C̃

qq̄,(0)
rk = 2z Fqq̄

√
(1− z2)(1− β2),

(A7)

where Fgg = 7+9β2z2

192(1−β2z2)2 and Fqq̄ = 1
18 .

2. Leading-order coefficients

We here list the linear contributions to the Fano coefficients induced by the SMEFT operators in terms of β and
z = cos θ. The gg-initiated ones are given by

Ãgg,(1) =
g2
s

Λ2

1

1− β2z2

[
g2
svmt(9β

2z2 + 7)

12
√

2
ctG −

β2m4
t

4m2
t − (1− β2)m2

h

cϕG +
9g2
sβ

2m2
t z

2

8
cG

]
, (A8a)

C̃gg,(1)
nn =

g2
s

Λ2

1

1− β2z2

[−7g2
svmt

12
√

2
ctG −

β2m4
t

4m2
t − (1− β2)m2

h

cϕG +
9g2
sβ

2m2
t z

2

8
cG

]
, (A8b)

C̃
gg,(1)
kk =

g2
s

Λ2

1

1− β2z2

[
g2
svmt

(
9β2z2 + 7

) (
β2
(
z4 − z2 − 1

)
+ 1
)

12
√

2 (β2z2 − 1)
ctG (A8c)

+
β2m4

t

4m2
t − (1− β2)m2

h

cϕG −
9g2
sβ

2m2
t z

2

8
cG

]
,

C̃gg,(1)
rr =

g2
s

Λ2

1

1− β2z2

[g2
svmt

(
−9β4

(
z − z3

)2 − 7β2
(
z4 − z2 + 1

)
+ 7
)

12
√

2 (β2z2 − 1)
ctG (A8d)

− β2m4
t

4m2
t − (1− β2)m2

h

cϕG +
9g2
sβ

2m2
t z

2

8
cG

]
,

C̃
gg,(1)
rk =

g2
s

Λ2

1

1− β2z2

[
g2
svmtβ

2z
(
1− z2

) (
9β2 +

(
β2 − 2

)
z2
(
9β2

(
z2 − 1

)
+ 7
)
− 2
)

24
√

2
√

(β2 − 1) (z2 − 1) (β2z2 − 1)
ctG (A8e)

+
9g2
sβ

2m2
t z

8

√
1− z2

1− β2
cG

]
.

Note that at threshold (β = 0) only ctG contributes. For cϕG and cG, we have that Agg,(1) = C
gg,(1)
nn .

For the qq̄ channel, we organize the 7 four-fermion octet operators defined in Eq. (A2) in terms of their behaviour
under top charge conjugation [27, 36, 40]. The combinations of Wilson coefficients contributing in the uū or cc̄
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initiated channels are given by

c
(8),u
V V = (c

(8,1)
Qq + c

(8,3)
Qq + c

(8)
tu + c

(8)
tq + c

(8)
Qu)/4, c

(8),u
AA = (c

(8,1)
Qq + c

(8,3)
Qq + c

(8)
tu − c(8)

tq − c(8)
Qu)/4,

c
(8),u
AV = (−c(8,1)

Qq − c
(8,3)
Qq + c

(8)
tu + c

(8)
tq − c(8)

Qu)/4, c
(8),u
V A = (−c(8,1)

Qq − c
(8,3)
Qq + c

(8)
tu − c(8)

tq + c
(8)
Qu)/4,

(A9)

where the (axial) vector current is odd (even) under charge conjugation. The corresponding combinations for the dd̄
and ss̄ initial state are obtained by replacing u→ d in the Wilson coefficients and flipping the sign of c(8,3)

Qq , whereas
the color-singlet coefficients are obtained by simply replacing (8) → (1). In terms of these combinations, we obtain
the following simple expressions for the spin-matrix coefficients for the uū and cc̄-initiated channel

Ãqq̄,(1) =
4g2
sm

2
t

9Λ2(1− β2)

[√
2g2
s

v

mt
(1− β2)ctG +

(
2− (1− z2)β2

)
c
(8),u
V V + 2zβc

(8),u
AA

]
, (A10a)

C̃qq̄,(1)
nn = −g

2
sm

2
t

Λ2

4β2(1− z2)

9(1− β2)
c
(8),u
V V , (A10b)

C̃
qq̄,(1)
kk =

2g2
sm

2
t

9Λ2(1− β2)

[
2
√

2g2
s

v

mt
(1− β2)z2ctG +

(
2 + β2 − (2− β2)(1− 2z2)

)
c
(8),u
V V + 4βzc

(8),u
AA

]
, (A10c)

C̃qq̄,(1)
rr =

4g2
sm

2
t (1− z2)

9Λ2(1− β2)

[√
2g2
s

v

mt
(1− β2)ctG + (2− β2)c

(8),u
V V

]
, (A10d)

C̃
qq̄,(1)
rk = −2g2

sm
2
t

9Λ2

√
1− z2

1− β2

[√
2g2
s

v

mt
(2− β2)zctG + 4zc

(8),u
V V + 2βc

(8),u
AA

]
, (A10e)

B̃
±,qq̄,(1)
k = 4g2

s

m2
t

9Λ2

1

1− β2

(
β(z2 + 1)c

(8),u
AV + 2zc

(8),u
V A

)
, (A10f)

B̃±,qq̄,(1)
r = −4g2

s

m2
t

9Λ2

√
1− z2

1− β2

(
βzc

(8),u
AV + 2c

(8),u
V A

)
. (A10g)

The corresponding coefficients for the dd̄ and ss̄ channel are again simply obtained by replacing u→ d.
We note that, at linear, order, the Fano coefficients do not receive any contributions from color-singlet operators.

As one might expect, the Fano coefficient Ãqq̄,(1), which is proportional to the cross-section, depends only on ctG,
c
(8),u
V V and c(8),u

AA at linear order. The same is true for the C̃qq̄,(1)
kk , C̃qq̄,(1)

rr and C̃qq̄,(1)
rk , while C̃qq̄,(1)

nn only depends on
c
(8),u
V V . The coefficients B̃±i , on the other hand, depend on the other two linear combinations, c(8),u

V A and c
(8),u
AV , and

only contribute to the concurrence at quadratic order, cf. Appendix C.
It should further be noted that the expressions above assume that the quark is traveling in the positive z-direction.

If instead the anti-quark is traveling in the positive z-direction, we need to flip z → −z (where now z = cos θ instead
of the coordinate z). In addition, we pick up an overall sign in C̃rk and B±r , as the unit vectors n and r of the helicity
basis, Eq. (6), change sign [43]. As a result, when adding the different initial-state contributions according to Eq. (4),
the contributions of the operators proportional to the cAA and cV A coefficients vanish.

3. Quadratic coefficients

The dimension-six squared contributions to the gg-induced coefficients are

Ãgg,(2) =
m4
t

Λ4

1

1− β2

[
g4
sv

2(9β4z4 + 4β2(3z2 + 4)− 37)

24m2
t (β

2z2 − 1)
c2tG +

24β2m4
t

((β2 − 1)m2
h + 4m2

t )
2
c2ϕG (A11a)

+
27g4

s(1− β2z2)

4(1− β2)
c2G +

2
√

2β2g2
svmt(z

2 − 1)

(β2z2 − 1)((β2 − 1)m2
h + 4m2

t )
ctGcϕG +

9g4
sv

2mt

√
2
ctGcG

]
,

C̃gg,(2)
nn =

m4
t

Λ4

1

1− β2

[
g4
sv

2

m2
t

9β4z2(z2 − 2) + 2β2(8z2 − 13) + 19

24(β2z2 − 1)
c2tG +

24β2m4
t

((β2 − 1)m2
h + 4m2

t )
2
c2ϕG (A11b)

+
27g4

s(β2z2 − 1)

4(β2 − 1)
c2G +

2
√

2β2g2
svmt(z

2 − 1)

(β2z2 − 1)((β2 − 1)m2
h + 4m2

t )
ctGcϕG +

9g4
sv

2
√

2mt

ctGcG

]
,



11

C̃
gg,(2)
kk =

m4
t

Λ4

1

1− β2

[
g4
sv

2

24m2
t

1

(1− β2z2)2

(
9β6z2

(
z4 − 2

)
+ β4

(
−18z6 + 25z4 − 12z2 − 14

)
(A11c)

+ β2
(
−28z4 + 81z2 + 12

)
− 18z2 − 19

)
c2tG −

24β2m4
t

(4m2
t −m2

h (1− β2))
2 c

2
ϕG

+
27g4

s

(
1−

(
2− β2

)
z2
)

4 (1− β2)
c2G −

2
√

2g2
svmtβ

2
(
1− z2

)
(1− β2z2) (4m2

t −m2
h (1− β2))

ctGcϕG

+
9g4
sv
(
1−

(
2− β2

)
z2
)

2
√

2mt (1− β2z2)
ctGcG

]
,

C̃gg,(2)
rr =

m4
t

Λ4

1

1− β2

[
g4
sv

2

24m2
t

1

(1− β2z2)2

(
− 9β6z2

(
z4 − 2z2 + 2

)
+ β4

(
18z6 − 57z4 + 52z2 − 14

)
(A11d)

+ β2
(
28z4 − 57z2 + 58

)
+ 18z2 − 37

)
c2tG +

24β2m4
t

(4m2
t −m2

h (1− β2))
2 c

2
ϕG

− 27g4
s

(
1−

(
2− β2

)
z2
)

4 (1− β2)
c2G +

2
√

2g2
svmtβ

2
(
1− z2

)
(1− β2z2) (4m2

t −m2
h (1− β2))

ctGcϕG

− 9g4
sv
(
1−

(
2− β2

)
z2
)

2
√

2mt (1− β2z2)
ctGcG

]
,

C̃
gg,(2)
rk =

m4
t

Λ4

1√
1− β2

[
g4
sv

2

192m2
t

1

(1− β2z2)2

(
− 144β4z3

(
1− z2

)3/2
+ 16β2z

√
1− z2

(
14z2 − 23

)
(A11e)

+ 144z
√

1− z2

)
c2tG +

27

2
g4
sz

√
1− z2

1− β2
c2G −

2
√

2g2
svmtβ

2z
√

1− z2

(1− β2z2) (4m2
t −m2

h (1− β2))
ctGcϕG

+
9g4
svz
√

1− z2

√
2mt (1− β2z2)

ctGcG

]
,

while for qq̄ we have

Ãqq̄,(2) =
4m4

t

9(1− β2)2Λ4

[
g4
sv

2

m2
t

(
1− β2

) (
2− β2

(
z2 + 1

))
c2tG +

g2
sv

mt
4
√

2
(
1− β2

)
(c

(8),u
V V + βzc

(8),u
AA )ctG (A12a)

+ β2

(
9(c

(1),u
AA )2

(
z2 + 1

)
+ 2(c

(8),u
AA )2

(
z2 + 1

)
+ z2

(
9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 + 9(c

(1),u
V A )2 + 2(c

(8),u
V A )2

+9(c
(1),u
V V )2 + 2(c

(8),u
V V )2

)
+ 9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 − 9(c

(1),u
V A )2 − 2(c

(8),u
V A )2 − 9(c

(1),u
V V )2 − 2(c

(8),u
V V )2

)
+ 4βz(9c

(1),u
AA c

(1),u
V V + 2c

(8),u
AA c

(8),u
V V + 9c

(1),u
AV c

(1),u
V A + 2c

(8),u
AV c

(8),u
V A )

+ 18(c
(1),u
V A )2 + 4(c

(8),u
V A )2 + 18(c

(1),u
V V )2 + 4(c

(8),u
V V )2

]
,

C̃qq̄,(2)
nn =

4m4
t

9Λ4

β2(1− z2)

(1− β2)2

[
g4
sv

2

m2
t

(
1− β2

)
c2tG + 9(c

(1),u
AA )2 + 2(c

(8),u
AA )2 + 9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 − 9(c

(1),u
V A )2 (A12b)

− 2(c
(8),u
V A )2 − 9(c

(1),u
V V )2 − 2(c

(8),u
V V )2

]
,

C̃
qq̄,(2)
kk =

4m4
t

9(1− β2)2Λ4

[
g4
sv

2

m2
t

(
1− β2

) (
z2(2− β2)− β2

)
c2tG +

g2
sv

mt
4
√

2
(
1− β2

)
z
(
βc

(8),u
AA + zc

(8),u
V V

)
ctG (A12c)

+ β2
(

9(c
(1),u
AA )2

(
z2 + 1

)
+ 2(c

(8),u
AA )2

(
z2 + 1

)
+ z2

(
9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 − 9(c

(1),u
V A )2 − 2(c

(8),u
V A )2

−9(c
(1),u
V V )2 − 2(c

(8),u
V V )2

)
+ 9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 + 9(c

(1),u
V A )2 + 2(c

(8),u
V A )2 + 9(c

(1),u
V V )2 + 2(c

(8),u
V V )2

)
+ 4βz(9c

(1),u
AA c

(1),u
V V + 2c

(8),u
AA c

(8),u
V V + 9c

(1),u
AV c

(1),u
V A + 2c

(8),u
AV c

(8),u
V A )

+ 2z2
(

9(c
(1),u
V A )2 + 2(c

(8),u
V A )2 + 9(c

(1),u
V V )2 + 2(c

(8),u
V V )2

)]
,
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C̃qq̄,(2)
rr =

4m4
t

9Λ4

1− z2

(1− β2)2

[
g4
sv

2

m2
t

(2− 3β2 + β4)c2tG +
g2
sv

mt
4
√

2
(
1− β2

)
c
(8),u
V V ctG (A12d)

− β2
(

9(c
(1),u
AA )2 + 2(c

(8),u
AA )2 + 9(c

(1),u
AV )2 + 2(c

(8),u
AV )2 + 2(c

(8),u
V A )2 + 9(c

(1),u
V V )2 + 2(c

(8),u
V V )2

)
− 9

(
β2 − 2

)
(c

(1),u
V A )2 + 4(c

(8),u
V A )2 + 18(c

(1),u
V V )2 + 4(c

(8),u
V V )2

]
,

C̃
qq̄,(2)
rk = − 8m4

t

9(1− β2)Λ4

√
1− z2

1− β2

[
g4
sv

2

m2
t

z(1− β2)c2tG +
g2
sv

mt

√
2
(
z(2− β2)c

(8),u
V V + βc

(8),u
AA

)
ctG (A12e)

+ β
(

9c
(1),u
AA c

(1),u
V V + 2c

(8),u
AA c

(8),u
V V + 9c

(1),u
AV c

(1),u
V A + 2c

(8),u
AV c

(8),u
V A

)
+ z

(
9(c

(1),u
V A )2 + 2(c

(8),u
V A )2 + 9(c

(1),u
V V )2 + 2(c

(8),u
V V )2

)]
,

where, again, the contributions above are for up-type quarks, whereas the down-type contribution is obtained replacing
u→ d. At the quadratic order, all the combinations c(8),u

V V , c(8),u
AA , c(8),u

V A and c(8),u
AV as well as their singlet counterparts

contribute.

Appendix B: Angular-averaged coefficients

We now execute the integration over the solid angle according to Eq. (11), switching from the (top-direction
dependent) helicity basis Eq. (6) to the beam basis. Averaging over the azimuthal angle, the correlation matrix
Cij becomes diagonal with two identical entries, C̃⊥ ≡ C̃xx = C̃yy, and the only non-vanishing component of the
polarization vectors is B±z . We are then left with the integrals

ÃΩ(β) =
1

2

1∫
−1

dz Ã(β, z) , B̃±z,Ω(β) =
1

2

1∫
−1

dz
[
z B̃±k (β, z) +

√
1− z2 B̃±r (β, z)

]
,

C̃z,Ω(β) =
1

2

1∫
−1

dz
[
z2 C̃kk(β, z) + (1− z2) C̃rr(β, z) + 2 z

√
1− z2 C̃rk(β, z)

]
,

C̃⊥,Ω(β) =
1

2

1∫
−1

dz
[
C̃nn(β, z) + (1− z2) C̃kk(β, z) + z2 C̃rr(β, z)− 2 z

√
1− z2 C̃rk(β, z)

]
.

(B1)

In the SM, we have [18]

Ã
gg,(0)
Ω =

1

192

[
−59 + 31β2 + 2(33− 18β2 + β4)

artanhβ

β

]
, (B2a)

C̃
gg,(0)
z,Ω =

1

2880β4

[
879β6 − 3413β4 + 4450β2 − 2940 + 4(72β4 − 745β2 + 735)

√
1− β2 (B2b)

+ 30
(
β8 − 53β6 + 151β4 − 181β2 + 98− 2(17β4 − 66β2 + 49)

√
1− β2

) artanhβ

β

]
,

C̃
gg,(0)
⊥,Ω =

1

2880β4

[
− 207β6 + 1024β4 − 2225β2 + 1470− 2(72β4 − 745β2 + 735)

√
1− β2 (B2c)

+ 15
(

33β6 − 116β4 + 181β2 − 98 + 2(17β4 − 66β2 + 49)
√

1− β2
) artanhβ

β

]
,

in the gg channel, and in the qq̄ channel we obtain

Ã
qq̄,(0)
Ω =

3− β2

27
, C̃

qq̄,(0)
z,Ω =

11− 3β2 + 4
√

1− β2

135
, C̃

qq̄,(0)
⊥,Ω =

2− β2 − 2
√

1− β2

135
. (B3)

The SMEFT contributions at linear order are given by

Ã
gg,(1)
Ω = −g

2
sm

2
t

Λ2

[
g2
sv

mt

9β − 16 artanhβ

12
√

2β
ctG +

m2
tβ artanhβ

4m2
t −m2

h(1− β2)
cϕG + 9g2

s

β − artanhβ

8β
cG

]
, (B4a)
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C̃
gg,(1)
z,Ω = −m

2
t

Λ2

[√
2g4
sv

360mt

(
1470− 1865β2 + 529β4 − 72β6

β4
√

1− β2
+

1470− 1130β2 + 264β4

β4
(B4b)

+ 15
9β6 − 68β4 + 157β2 − 98 +

(
β6 − 27β4 + 108β2 − 98

)√
1− β2

β4
√

1− β2

artanhβ

β

)
ctG

+
g2
sm

2
t

β

2β − (2− β2) artanhβ

4m2
t −m2

h(1− β2)
cϕG

+
3g4
s

8β3

4β3 − 6β + (β3 − 6β)
√

1− β2 +
(

6− 6β2 + 3(2− β2)
√

1− β2
)

artanhβ√
1− β2

cG

]
,

C̃
gg,(1)
⊥,Ω =

m2
t

Λ2

[ √
2g4
sv

720mtβ4(1− β2)

(
111β6 + 1019β4 − 2600β2 + 1470 (B4c)

− (72β6 − 529β4 + 1865β2 − 1470)
√

1− β2 − 15
(
1− β2

) (
β6 + 23β4 − 108β2 + 98

) artanhβ

β

− 15
(
9β4 − 59β2 + 98

) (
1− β2

)3/2 artanhβ

β

)
ctG +

g2
sm

2
t (β − artanhβ)

β (4m2
t −m2

h(1− β2))
cϕG

+
3g4
s

8

2β3 − 3β − (β3 + 3β)
√

1− β2 + 3
(

1− β2 +
√

1− β2
)

artanhβ

β3
√

1− β2
cG

]
,

Ã
qq̄,(1)
Ω =

4g2
sm

2
t

27Λ2

[
3
√

2
g2
sv

mt
ctG + 2

3− β2

1− β2
c
(8),u
V V

]
, (B5a)

C̃
qq̄,(1)
z,Ω =

8g2
sm

2
t

135Λ2

[
g2
sv

mt

2β2 − 4 + 11
√

1− β2√
2− 2β2

ctG +
11− 3β2 − 4

√
1− β2

1− β2
c
(8),u
V V

]
, (B5b)

C̃
qq̄,(1)
⊥,Ω =

8g2
sm

2
t

135Λ2

[
g2
sv

mt

2− β2 + 2
√

1− β2√
2− 2β2

ctG +
2− β2 + 2

√
1− β2

1− β2
c
(8),u
V V

]
, (B5c)

B
qq̄,(1)
z,Ω =

8g2
sm

2
t

27Λ2

1− 2
√

1− β2

1− β2
c
(8),u
V A (B5d)

and the dimension-six squared corrections are

Ã
gg,(2)
Ω =

m4
t

Λ4

1

1− β2

[
g4
sv

2

m2
t

3β(7 + β2) + 16(1− β2) artanhβ

24β
c2tG +

24m4
tβ

2

(4m2
t −m2

h(1− β2))
2 c

2
ϕG (B6a)

+
9g4
s

4

3− β2

1− β2
c2G + 2

√
2g2
smtv

β − (1− β2) artanhβ

β (4m2
t −m2

h(1− β2))
ctGcϕG +

9g4
sv

2
√

2mt

ctGcG

]
,

C̃
gg,(2)
z,Ω =

m4
t

Λ4

1

1− β2

[
g4
sv

2

360m2
tβ

4

(
429β6 − 2773β4 + 7100β2 − 4800−

(
288β4 − 4700β2 + 4800

)√
1− β2 (B6b)

+ 30
(
β8 − 12β6 + 141β4 − 290β2 + 160 + 10

(
5β4 − 21β2 + 16

)√
1− β2

) artanhβ

β

)
c2tG

+
8m4

tβ
2

(4m2
t −m2

h(1− β2))
2 c

2
ϕG +

9g4
s

20

β2 − 7 + 8
√

1− β2

1− β2
c2G −

2
√

2g2
smtv

3β3
√

1− β2

(
4β5 − 10β3 + 6β

4m2
t − (1− β2)m2

h

+
6β − 7β3

4m2
t − (1− β2)m2

h

√
1− β2 − 3

2(1− β2)2 + (β4 − 3β2 + 2)
√

1− β2

4m2
t − (1− β2)m2

h

artanhβ

)
ctGcϕG

+
3
√

2g4
sv

4mtβ5
√

1− β2

(
8β5 − 20β3 + 12β + (β5 − 14β3 + 12β)

√
1− β2

− 6(1− β2)
(

2(1− β2) + (2− β2)
√

1− β2
)

artanhβ

)
ctGcG

]
,
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C̃
gg,(2)
⊥,Ω =

m4
t

Λ4

1

1− β2

[
g4
sv

2

360m2
tβ

4

(
48β6 + 1094β4 − 3550β2 + 2400 +

(
144β4 − 2350β2 + 2400

)√
1− β2 (B6c)

+ 15
(
β8 + 28β6 − 159β4 + 290β2 − 160− 10

(
5β4 − 21β2 + 16

)√
1− β2

) artanhβ

β

)
c2tG

+
8m4

tβ
2

(4m2
t −m2

h(1− β2))
2 c

2
ϕG −

9g4
s

20

3β2 − 11 + 4
√

1− β2

1− β2
c2G

− 2
√

2g2
smtv

3β2 (4m2
t −m2

h(1− β2))

(
1 +

√
1− β2

)(
2β2 − 3 + 3(1− β2)

artanhβ

β

)
ctGcϕG

+
3
√

2g4
sv

4mtβ4

(
β4 + 7β2 − 6 + (4β2 − 6)

√
1− β2 + 3

(
2− 3β2 + β4 + 2(1− β2)3/2

) artanhβ

β

)
ctGcG

]
,

Ã
qq̄,(2)
Ω =

8m4
t

27Λ4

[
g4
sv

2

m2
t

3− 2β2

1− β2
c2tG + 6

√
2
g2
sv

mt

1

1− β2
ctGc

(8),u
V V (B7a)

+
3− β2

(1− β2)2

(
9(c

(1),u
V V )2 + 9(c

(1),u
V A )2 + 2(c

(8),u
V V )2 + 2(c

(8),u
V A )2

)
+

2β2

(1− β2)2

(
9(c

(1),u
AA )2 + 9(c

(1),u
AV )2 + 2(c

(8),u
AA )2 + 2(c

(8),u
AV )2

)]
,

C̃
qq̄,(2)
z,Ω =

8m4
t

135Λ4

1

(1− β2)
2

[
g4
sv

2

m2
t

(1− β2)
(

11− 8β2 − 4
√

1− β2
)
c2tG (B7b)

+ 2
√

2
g2
sv

mt

(
11
(
1− β2

)
+
(
2β2 − 4

)√
1− β2

)
ctGc

(8),u
V V

+
(

11− 3β2 − 4
√

1− β2
)(

9(c
(1),u
V V )2 + 9(c

(1),u
V A )2 + 2(c

(8),u
V V )2 + 2(c

(8),u
V A )2

)]
,

C̃
qq̄,(2)
⊥,Ω =

8m4
t

135Λ4

1

(1− β2)
2

[
g4
sv

2

m2
t

(1− β2)
(

2− β2 + 2
√

1− β2
)
c2tG (B7c)

+ 2
√

2
g2
sv

mt

(
2
(
1− β2

)
+
(
2− β2

)√
1− β2

)
ctGc

(8),u
V V

+ 5β2
(

9(c
(1),u
AA )2 + 9(c

(1),u
AV )2 + 2(c

(8),u
AA )2 + 2(c

(8),u
AV )2

)
+
(

2− β2 + 2
√

1− β2
)(

9(c
(1),u
V V )2 + 9(c

(1),u
V A )2 + 2(c

(8),u
V V )2 + 2(c

(8),u
V A )2

)]
.

Appendix C: Concurrence

Let us now take the SM plus dimension-six operators and, for simplicity, work in the basis where Cij is diagonal.
The eigenvalues of Cij and the elements B±i can be expanded as

Ci = C
(0)
i +

1

Λ2
C

(1)
i +

1

Λ4
C

(2)
i and Bi =

1

Λ2
B

(1)
i +

1

Λ4
B

(2)
i , (C1a)

where we used that B±i = 0 in the SM and that, in the absence of CP -odd operators, B+
i = B−i . Defining

Ī = 1− 1

Λ4

 B
(1)
1

2

1 + C
(0)
1

+
B

(1)
2

2

1 + C
(0)
2

 , (C2a)

C̄i = C
(0)
i +

1

Λ2
C

(1)
i +

1

Λ4
C

(2)
i −

1

Λ4

B
(1)
i

2

1 + C
(0)
i

, (C2b)

the eigenvalues of ω are then given by Ī − C̄3 ± (C̄1 + C̄2) and Ī + C̄3 ± (C̄1 − C̄2), and the concurrence simply reads

C[ρ] = max

(
0,
±C̄3 +

∣∣C̄1 ∓ C̄2

∣∣− Ī
2

)
. (C3)
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Further using that, in this case, the n̂ direction is uncorrelated with the other two directions, i.e., Cnk = Ckn =
Cnr = Crn = 0, as well as that the polarization in this direction vanishes, i.e., B±n = 0, we see that also B3 = 0 in
the diagonal basis. Including the dimension-six-squared contributions, we obtain

C
(0)
1,2 =

1

2

[
C(0)
rr + C

(0)
kk ±

√(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

]
, (C4a)

C
(1)
1,2 =

1

2

C(1)
rr + C

(1)
kk ±

(
C

(1)
rr − C(1)

kk

)(
C

(0)
rr − C(0)

kk

)
+ 4C

(1)
rk C

(0)
rk√(

C
(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

 , (C4b)

C
(2)
1,2 =

1

2

C(2)
rr + C

(2)
kk ±

(
C

(2)
rr − C(2)

kk

)(
C

(0)
rr − C(0)

kk

)
+ 4C

(2)
rk C

(0)
rk√(

C
(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

 (C4c)

±

[(
C

(1)
rr − C(1)

kk

)
C

(0)
rk − C

(1)
rk

(
C

(0)
rr − C(0)

kk

)]2
[(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2
]3/2

,

C
(0,1,2)
3 = C(0,1,2)

nn , (C4d)

as well as

B
(1)
1 =

B
(1)
r 2C

(0)
rk +B

(1)
k

(
C

(0)
rr − C(0)

kk +

√(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

)
√√√√4C

(0)
rk

2
+

(
C

(0)
rr − C(0)

kk +

√(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

)2
, (C4e)

B
(1)
2 =

B
(1)
r

(
C

(0)
rr − C(0)

kk +

√(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

)
−B(1)

k 2C
(0)
rk√√√√4C

(0)
rk

2
+

(
C

(0)
rr − C(0)

kk +

√(
C

(0)
rr − C(0)

kk

)2

+ 4C
(0)
rk

2

)2
. (C4f)

Appendix D: Probabilities

In Section IV, we have defined the probabilities to find the top quark pair in a triplet state. As a function of the
Wilson coefficients, these are

pgg =
72

7Λ4
m2
t (3
√

2mt cG + v ctG)2 , (D1)

pqq̄ =
1

2
− 4

c
(8),u
V A

Λ2
+

8m4
t

Λ4

(v√2

mt
c
(8),u
V A ctG − 9c

(1),u
V A c

(1),u
V V + 2c

(8),u
V A c

(8),u
V V

)
, (D2)
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at threshold, while for the high-energy central region (z = 0) we have

pggΨ+ =
β2

1 + 2β2 − 2β4
+

4β2mt

Λ2(1− 2β2 − 2β4)3

(
7
√

2v(1− 4β4(1− β2)2)ctG +
48β2m3

t (1 + 2β2 − 2β4)

g2
s(1− β2)m2

h + 4m2
t

cϕG

)
(D3)

+
−8β2m2

t

49(1− β2)2(1− 2β2 − 2β4)3

(
576β2(β2 − 1)(6β4 − 6β2 − 7)m6

t

g4
s((β2 − 1)m2

h + 4m2
t )

2
c2ϕG

+
336
√

2β2(β2 − 1)(4β6 − 6β4 + 8β2 − 7)vm3
t

g2
s((β2 − 1)m2

h + 4m2
t )

ctGcϕG

− 7(162(2β4 − 2β2 − 1)c2Gm
2
t − 54

√
2(2β6 − 4β4 + β2 + 1)vmtcGctG

+ (28β12 − 112β10 + 284β8 + 506β6 + 507β4 − 231β2 + 26)v2c2tG

)
,

puuΨ+ =
1

2− β2
− 4mtv

√
2β2

(2− β2)2Λ2
ctG +

8β2m2
t

(2− β2)3(1− β2)2g4
sΛ4

(
(β6 + 3β2 − 8β2 + 4)g4

sv
2c2tG (D4)

+ 2
√

2(β4 − 3β2 + 2)g2
smtvctGc

(8),u
V V − (2− β2)m2

t (9(c
(1),u
AA )2 + 9(c

(1),u
AV )2 + 2((c

(8),u
AA )2 + 9(c

(8),u
AV )2))

)
,

where we note that the quadratic contribution has a pole at β = 1.
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